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1 Hilbert Spaces

Recall that an inner product (·|·) satisfies:

1. (x|y) = (y|x)
2. (x+ y|z) = (x|z) + (y|z) and (λx|y) = λ(x|y)
3. (x|x) ≥ 0 with equality iff x = 0

Some basic facts include:

•
∣∣(x|y)

∣∣ ≤ ‖x‖‖y‖ with equality iff x = λy or y = 0 (Cauchy Schwarz Inequality)

•
√

(x|x) = ‖x‖ defines a norm
• (x|y) = 0 for all y implies x = 0, the proof is to set y = x and use property (3) in the

definition
• ‖x+y‖2 +‖x−y‖2 = 2‖x‖2 +2‖y‖2 (Parallelogram Law), the proof requires expansion
• A Hilbert Space is a complete inner product space

Lemma 1 (Continuity of the Inner Product).

Proof. Let xn → x and yn → y. Then∣∣(xn|yn)− (x|y)
∣∣ =

∣∣(xn|yn)− (xn|y) + (xn|y)− (x|y)
∣∣

≤
∣∣(xn|yn − y)

∣∣+
∣∣(xn − x|y)

∣∣
≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖ (C-S)

≤M‖yn − y‖+ ‖xn − x‖‖y‖ → 0.

1.1 Projection

If (x|y) = 0, then x⊥y. Further, ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Theorem 1. Let X be an inner product space, M a subspace of X, x ∈ X. If there is a
vector m0 ∈M such that ‖x−m0‖2 ≤ ‖x−m‖ for all m ∈M , then m0 is unique. Further,
x−m0 ∈M⊥ necessarily; this is also sufficient.

Such a projection m0 is guaranteed to exist if X is complete (ie, a Hilbert space) and M is
closed.

1.2 Orthogonal Complements

Define the orthogonal complement S⊥ = {x ∈ X : x⊥s, ∀s ∈ S}. S⊥ is necessarily a closed
subspace (closed by the continuity of the inner product). Further:

• S ⊂ T implies T⊥ ⊂ S⊥
• S ⊂ [S] = S⊥⊥

Define the direct sum: X = M ⊕N if for all x ∈ X, there exist unique m ∈ M and n ∈ N
such that X = M +N .

Theorem 2. If M is a closed linear subspace of a Hilbert space H, then H = M ⊕M⊥ and
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M = M⊥⊥.

Proof. That H = M + M⊥ follows from the projection theorem. For uniqueness, if x =
m0 + n0 = m1 + n1, then m0 −m1 + n0 − n1 = 0. As m0 −m1 ∈ M and n0 − n1 ∈ M⊥,
Pythagoras’s Theorem states that 0 = m0−m1 = n0−n1 so the representation is unique.

Proposition 1. An orthogonal set of nonzero vectors is a LI set.

Proof. Let {x1, . . . , xn} be a finite subset of the orthogonal set. Take scalars α1, . . . , αn such
that

∑n
i=1 αixi = 0. Then

n∑
i=1

αi(xi|xk) =

( n∑
i=1

αixi

∣∣∣∣xk) = (0|xk) = 0.

Hence, as xk 6= 0, (xk|xk) > 0 and αk = 0. Inducting (relying on AC if set is infinite),
αi = 0 for all i.

Theorem 3 (Gram-Schmidt). Let {xi} be a finite or countable sequence of LI vectors in
inner product space X. Then there exists orthonormal sequence {ei} such that

[e1, . . . , en] = [x1, . . . , xn], ∀n ∈ N.

Proof. Set e1 = x1/‖x1‖, zn = xn −
∑n−1
i=1 (xn|ei)ei, and en = zn/‖zn‖.

1.3 Approximations

Say if we want to project x ∈ H into [y1, . . . , yn], a closed subspace of H. Denote the
projection as α1y1 + · · ·+ αnyn. By the projection theorem,(

x− α1y1 − · · · − αnyn
∣∣yi) = 0

for all i = 1, . . . , n. Arranging, we have:

(y1|y1)α1 + · · ·+ (yn|y1)αn = (x|y1)

...

(y1|yn)α1 + · · ·+ (yn|yn)αn = (x|yn)

and thus (y1|y1) · · · (yn|y1)
...

. . .
...

(y1|yn) · · · (yn|yn)


︸ ︷︷ ︸

Transpose of Gram matrix

α1

...
αn

 =

(x|y1)
...

(x|yn)



The determinant of the Gram matrix G is denoted g(y1, . . . , yn).

Proposition 2. g(y1, . . . , yn) 6= 0 iff y1, . . . , yn are LI.

Proof. We shall prove the contrapositive: g(y1, . . . , yn) = 0 iff y1, . . . , yn are LD. As-
sume y1, . . . , yn are LD. There exist α1, . . . , αn, not all zero, such that

∑n
i=1 αiyi = 0.

We must therefore have that
(∑n

i=1 αiyi
∣∣yj) = 0 for all j = 1, . . . , n. Then (yn|yj) =∑n

i=1(−αi/αn)(yi|yj) for all j, so G must be rank deficient and g = 0. Conversely, if(∑n
i=1 αiyi

∣∣yj) = 0 for all j and with some αi not zero, then 0 =
∑n
j=1 αj

(∑n
i=1 αiyi

∣∣yj) =(∑n
i=1 αiyi

∣∣∑n
j=1 αjyj

)
= ‖
∑n
i=1 αiyi‖2.
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Theorem 4. Let y1, . . . , yn be LI. Let δ be the minimum distasnce from x to the subspace
M generated by {yi}. Then

δ2 =
g(y1, . . . , yn, x)

g(y1, . . . , yn)

1.4 Abstract Fourier Series

Theorem 5. Let {ei} be an orthonormal sequence in a Hilbert space H. A series of the
form

∑∞
i=1 ξiei converges to some x ∈ H iff

∑∞
i=1 |ξi|2 <∞. In that case, ξi = (x|ei).

Lemma 2 (Bessel’s Inequality). Let x be an element in a Hilbert space H and suppose {ei}
is an orthonormal sequence in H. Then

∑∞
i=1

∣∣(x|ei)∣∣2 ≤ ‖x‖2.

Theorem 6. Let x be an element in a Hilbert space H and suppose {ei} is an orthonormal
sequence in H. Then the series

∑∞
i=1(x|ei)ei converges to an element x̂ in the closed subspace

M := [{ei}∞i=1]. The residual x− x̂ is orthogonal to M .

Lemma 3. An orthonormal sequence {ei} in a Hilbert space H is complete (ie, [{ei}∞i=1] =
H) iff the only vector orthogonal to each ei is the null vector.

Proof. This follows from H = M ⊕M⊥.

A corollary of the previous lemma (but a long proof involving the Weierstrass Approximation
Theorem) is that the countable space of polynomials is dense in L2[a, b].

The practical implication of this section is that we don’t have to solve the linear system

G>α =
(
(x|y1), . . . , (x|yn)

)>
to find the projection. Instead, we can use Gram-Schmidt to

turn {y1, . . . , yn} into {e1, . . . , en} and then find x̂ =
∑n
i=1(x|ei)ei.

1.5 Other Minimum Norm Problems

We move onto our first generalisation of the projection theorem.

Theorem 7. Let M be a closed subspace of a Hilbert space H. Let x ∈ H and V := x+M .
Then there exists a unique x0 ∈ V of minimum norm. Furthermore, x0⊥M (not x0⊥V ).

Proof. This is an x-shift of the problem of projecting −x onto M .

Theorem 8. Let H be a Hilbert space and y1, . . . , yn ∈ H be LI. Among all vectors x ∈ H
satisfying (x|yi) = ci for i = 1, . . . , n, let x0 have the minimum norm. Then x0 ∈ [y1, . . . , yn]
and may be written as

x0 =

n∑
i=1

βiyi

where satisfying (x0|yi) = ci for i = 1, . . . , n necessitate

(y1|y1)β1 + · · ·+ (yn|y1)βn = c1

...

(y1|yn)β1 + · · ·+ (yn|yn)βn = cn.

This is equivalent to G>β = c.



Nick Cao 4

Proof. Let M = [y1, . . . , yn]. The n constraints define a “linear variety” (shifted linear
subspace) x + M⊥, where x ∈ H satisfies the n constraints. By the restated projection
theorem, x0 ∈ M⊥⊥. As M is a closed subspace, M = M⊥⊥. The condition G>β = c
ensure x0 ∈M .

Do go back and read Example 1 on page 66, it’s truly great.

Duality: Let M be a closed subspace of Hilbert space H and let x ∈ H. The two problems:

1. project x onto M
2. project x onto M⊥

are complete symmetric because M⊥⊥ = M . If m0 is the projection of x onto M , then
x−m0 ∈M⊥ is the projection of x onto M⊥.

The second generalisation of the projection theorem is to convex sets:

Theorem 9. Let x be a vector in a Hilbert space H and let K be a closed convex subset of
H. Then there is a unique vector k0 ∈ K such that

‖x− k0‖ ≤ ‖x− k‖

for all k ∈ K. Furthermore, a necessary and sufficient condition that k0 be the unique
minimising vector is that (x− k0|k − k0) ≤ 0 for all k ∈ K.

2 Dual Spaces

2.1 Linear Functionals

Let X be a vector space with the scalar field K. A functional is a map f : X → K. A linear
functional satisfies f(αx+ βy) = αf(x) + βf(y) for any x, y ∈ X and α, β ∈ K. Some basic
facts about linear functionals on normed spaces:

• If a linear functional is continuous at a single point, it is continuous everywhere.
• A linear functional is bounded if there is some M such that |f(x)| ≤ M‖x‖ for all
x ∈ X.

• A linear functional is bounded iff it is continuous.

The functional norm is thus defined:

‖f‖ = inf
M
{M : |f(x)| ≤M‖x‖, ∀x ∈ X} = sup

x 6=0

|f(x)|
‖x‖

= sup
‖x‖≤1

|f(x)| = sup
‖x‖=1

|f(x)|

The space of all bounded linear functionals over X is denoted X∗ and is called the (topolog-
ical) dual of X. It is a linear space when additional and scalar multiplication are defined in
the usual way for functions.

Theorem 10. If X is a Banach space, then X∗ is a Banach space.

Proof. Let {x∗n} be Cauchy inX∗. Then ‖x∗n−x∗m‖ → 0 as n,m→ 0. Then |x∗n(x)−x∗m(x)| ≤
‖x∗n − x∗m‖‖x‖ → 0. Then x∗n(x) → x∗(x) ∈ K by the completeness of K. By the linearity
of limits, x∗ is a linear functional. Now for all ε > 0, there exists N ∈ N such that
|x∗n(x) − x∗m(x)| ≤ ε‖x‖ for all n,m ≥ N . Take m → ∞, we have |x∗n(x) − x∗(x)| ≤ ε‖x‖,
so ‖x∗n − x∗‖ ≤ ε and thus x∗n → x∗. Finally, we show that x∗ is bounded: |x∗(x)| ≤
|x∗(x)− x∗n(x)|+ |x∗n(x)| ≤ (ε+ ‖x∗n‖)‖x‖ for any n ≥ N .
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Proposition 3. The dual of Rn (with the usual norm) is Rn, i.e. a bounded linear func-
tional f can be represented by f(x1, . . . , xn) =

∑n
i=1 yixi for yi ∈ R and every y ∈ Rn

defines a bounded linear functional f in the same way.

Proof. It is obvious that the f defined by y is linear. Now

|f(x)| =
∣∣∑n

i=1 yixi
∣∣ ≤ ∣∣∑n

i=1 y
2
i

∣∣1/2∣∣∑n
i=1 x

2
i

∣∣1/2 =
∣∣∑n

i=1 y
2
i

∣∣1/2‖x‖
where we make use of the Cauchy-Schwarz inequality. Equality is achieved at x = y and thus

‖f‖ =
∣∣∑n

i=1 y
2
i

∣∣1/2 = |y|. Thus, there is a one-to-one correspondence between f ∈ (Rn)∗

and y ∈ Rn.

Let f be a bounded linear functional. Then

f(x) = f

( n∑
i=1

xiei

)
=

n∑
i=1

xif(ei)

Setting yi = f(ei), we obtain f in the desired form. Setting x = y, we obtain f(y) = |y|
and hence ‖f‖ = ‖y‖ (again ‖f‖ ≤ ‖y‖ because of Cauchy-Schwarz).

Proposition 4. The dual of `p is `q (1/p+1/q = 1, p <∞), i.e. a bounded linear functional
f can be represented by f(x) =

∑∞
i=1 yixi where y ∈ `q, and every y ∈ `q defines a bounded

linear functional f in the same way. Also, ‖f‖ = ‖y‖q.

Proof. Let f be a bounded linear functional. Then

f(x) = f

( ∞∑
i=1

xiei

)
=

∞∑
i=1

xif(ei) =

∞∑
i=1

xiyi

where we set yi = f(ei).

Suppose 1 < p <∞. Consider the sequence x(N) ∈ `p such that x
(N)
i = |yi|q/p sign(yi)1[i≤N ].

Now ‖x(N)‖p =
(∑N

i=1 |yi|q
)1/p

, and

f(x(N)) =

N∑
i=1

|yi|q/p+1 =

N∑
i=1

|yi|q =

( N∑
i=1

|yi|q
)1/q

‖x(N)‖.

By the definition of the functional norm,
(∑N

i=1 |yi|q
)1/q ≤ ‖f‖. Taking N → ∞, we see

that ‖y‖q ≤ ‖f‖ and thus y ∈ `q.

It is obvious that the f defined by y is linear. Now

|f(x)| =
∣∣∑∞

i=1 yixi
∣∣ ≤ ∣∣∑∞i=1 y

p
i

∣∣1/p∣∣∑∞
i=1 x

q
i

∣∣1/q = ‖y‖‖x‖

where we make use of the Hölder inequality. Hence ‖f‖ ≤ ‖y‖q and hence y defines a
bounded linear functional f .

Combining the two inequalities, we see that ‖f‖ = ‖y‖q.

For p = 1, repeat the proof with x(N) = sign(yN ) eN .

Proposition 5. The dual of Lp(Ω,A, µ) is Lq(Ω,A, µ) (1/p + 1/q = 1, p < ∞), i.e. a
bounded linear functional f can be represented by f(x) =

∫
Ω
x y dµ where y ∈ Lq, and every

y ∈ Lq defines a bounded linear functional f in the same way. Also, ‖f‖ = ‖y‖q.
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Proof. Use lots of measure theory.

Theorem 11 (Riesz Representation Theorem). If f is a bounded linear functional on a
Hilbert space H, there exists a unique vector y ∈ H such that for all x ∈ H, f(x) = (x|y).
Furthermore, we have ‖f‖ = ‖y‖ and every y determines a unique bounded linear functional
in this way. A Hilbert space is its own dual.

Proof. Let N = f−1[{0}], which is a closed subspace of H. Now H = N ⊕N⊥. If N = H,
then f = 0 and y = 0. If N 6= H, then there exists z ∈ N⊥. As N⊥ is a subspace,
we can take z such that f(z) = 1. Then for any x ∈ H, we have x − f(x)z ∈ N as
f(x − f(x)z) = f(x) − f(x)f(z) = 0. Then z⊥N implies that (x − f(x)z|z) = 0 and that
(x|z) = f(x)(z|z) and hence we get the theorem by taking y = z/‖z‖2.

Let us define a function of bounded variation: v : [a, b]→ R is of bounded variation if

sup

{ n∑
i=1

|v(xi)− v(xi−1)|
∣∣∣∣{x0, . . . , xn} is a partition of [a, b]

}
<∞

and the supremum is called the total variation of v.

Theorem 12 (Riesz-Kakutani-Markov Representation Theorem). Let f be a bounded linear
functional on X = C[a, b]. Then there is a function v of bounded variation on [a, b] such
that

f(x) =

∫ b

a

x(t)dv(t), ∀x ∈ X

and ‖f‖ is the total variation of v. Conversely, every function of bounded variation on [a, b]
defines a bounded linear functional on X in this way.

More generally, if X is a locally compact Hausdorff space, there is a unique regular Borel
measure µ on X such that

f(x) =

∫
X

x(t)dµ(t), ∀x ∈ X.

The proof in the book uses the Stieltjes integral to prove the [a, b] domain case. As usual,
BV [a, b] does not provide unique duals: we need to deal with annoying measure zero cases.
We do this by defining the normalised space of bounded variation functions NBV [a, b],
which impose v(a) = 0 and right-continuity on (a, b).

2.2 Hahn-Banach Theorem

Let M,N be subspaces of vector space X with M ⊂ N , and f : M → K be a linear
functional. Then a linear functional F : N → K is an extension of f from M to N if
f(m) = F (m) for all m ∈M .

A sublinear functional p on a real vector space X satisfies:

1. p(x1 + x2) ≤ p(x1) + p(x2) for all x1, x2 ∈ X
2. p(αx) = αp(x) for all α ≥ 0 and x ∈ X

Theorem 13 (Hahn-Banach, Extension form). Let X be a real linear normed space and p a
continuous sublinear functional on X. Let f be a sublinear functional defined on a subspace
M of X satisfying f(m) ≤ p(m) for all m ∈M . Then there is an extension F of f from M
to X such that F (x) ≤ p(x) on X.
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In particular, if f is a bounded linear functional, taking p(x) = ‖f‖M‖x‖, there is an
extension F of f from M to X such that F (x) ≤ ‖f‖M‖x‖. Thus, ‖F‖ = ‖f‖M .

A corollary is that for any x ∈ X, where X is a normed space, there is a nonzero bounded
linear functional F on X such that F (x) = ‖F‖‖x‖. The proof is to consider the one-
dimensional subspace [x] (or [y] for y 6= 0 if x = 0) and note that f(αx) = α‖x‖ is a linear
function for all α ∈ K (and hence any z ∈ [x]) and is bounded by α (f is like a signed
norm?). By Hahn-Banach, f can be extended to F on X. Set α = 1 to obtain the result.
The converse is not true (in non-reflexive spaces)—there are bounded linear functionals f
such that ‖x‖ < ‖f‖ for all x 6= 0.

2.3 Second Dual Space

Introduce the angle bracket notation: 〈x, x∗〉 := x∗(x). Note that by the Riesz Represen-
tation Theorem, inner products on Hilbert spaces are bounded linear functionals when one
multiplier is held fixed, and hence this notation generalises inner products.

Fix x ∈ X. Then f(x∗) = 〈x, x∗〉 is a linear functional on X∗. Now |f(x∗)| = |〈x, x∗〉| =
|x∗(x)| ≤ ‖x∗‖‖x‖ and hence ‖f‖ ≤ ‖x‖. Conversely, by the corollary to the Hahn-Banach
theorem, there exists x∗ ∈ X∗ such that f(x∗) = 〈x, x∗〉 = ‖x‖‖x∗‖. Hence ‖f‖ = ‖x‖.
Hence f is a bounded linear functional. We can thus define the natural mapping φ : X → X∗∗

such that 〈x, x∗〉 = 〈x∗, φ(x)〉. Where φ is surjective, there is a bijection between X and
X∗∗ and we write X = X∗∗ and call X reflexive. This holds for the `p and Lp spaces where
1 < p <∞. However, X ⊂ X∗∗ holds strictly for non-reflexive spaces, such as `1 and L1.

In a reflexive space, all bounded linear functionals f have some x ∈ X such that f(x) =
‖f‖‖x‖.

2.4 Alignment and Orthogonal Complements

x∗ ∈ X∗ is aligned with x ∈ X if 〈x, x∗〉 = ‖x∗‖‖x‖.

For example, x ∈ Lp is aligned with y ∈ Lq if and only if the condition for equality in the
Hölder Inequality hold: x(t) = K sign(y(t))|y(t)|q/p for some constant K. If x ∈ C[a, b],
then denoting Γ+ = x−1[‖x‖] and Γ− = x−1[−‖x‖], v ∈ NBV [a, b] is aligned with x iff v is
increasing in Γ+, decreasing in Γ−, and does not vary elsewhere. Under these conditions,∫ b
a
x(t)dv(t) = ‖x‖

(∫
Γ+ dv(t)−

∫
Γ−
dv(t)

)
= ‖x‖TV (v) = ‖x‖‖v‖.

x∗ ∈ X∗ is orthogonal to x ∈ X if 〈x, x∗〉 = 0.

Let S ⊂ X. Define the orthogonal complement/annihilator S⊥ = {x∗ ∈ X∗ : 〈s, x∗〉 =
0, ∀s ∈ S} ⊂ X∗. Similarly, if U ⊂ X∗, then U⊥ ⊂ X∗∗. More usefully, the orthogonal
complement of U in X is ⊥U = {x ∈ X : 〈x, u〉 = 0, ∀u ∈ U} ⊂ X. Note that ⊥U =
U⊥ ∩ φ[X] where φ is the natural mapping.

Theorem 14. Let M be a closed subspace of normed space X. Then ⊥[M⊥] = M .

2.5 Minimum Norm Problems

Theorem 15. Let X be a real normed vector space and M be a subspace of X. Let x ∈ X
and d = dist(x,M) = infm∈M‖x − m‖. Then d = maxx∗∈M⊥:‖x∗‖≤1〈x, x∗〉, achieved at

some x∗0 ∈M⊥. If the infimum is achieved at m0 ∈M , then x∗0 is aligned with x−m0, that
is to say, 〈x −m0, x

∗
0〉 = ‖x −m0‖‖x∗0‖. In more natural notation, if ‖x‖M = dist(x,M),

then ‖x‖M = ‖x‖M⊥ where the right-hand term is the usual functional norm applied to the
naturally mapped φ(x).
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Proof. The proof is trivial if x ∈M . Hence assume x /∈M .

Step 1: Prove 〈x, x∗〉 ≤ d. Let ε > 0 be arbitrary, let mε ∈ M satisfy ‖x −mε‖ ≤ d + ε,
which exists because M is a subspace. Then for any x∗ ∈M⊥ such that ‖x∗‖ ≤ 1, we have
〈mε, x

∗〉 = 0 and hence

〈x, x∗〉 = 〈x−mε, x
∗〉 ≤ ‖x∗‖︸︷︷︸

≤1

‖x−mε‖ ≤ d+ ε

As ε > 0 was arbitrary, we have 〈x, x∗〉 ≤ d.

Step 2: Prove that the maximum is attained at some x∗0. Let N = [x + M ]. If n ∈ N , the
representation n = αx+m is unique, where α ∈ R and m ∈M . Define the linear functional
f : N → R by f(n) = αd. Note that if m ∈ M , then α = 0 and f(m) = 0, and that
f(x) = d. We have

‖f‖ = sup
N

|f(n)|
‖n‖

= sup
N

|α|d
‖αx+m‖

= sup
N

|α|d
|α|‖x+m/α‖

=
d

infN‖x+m/α‖
= 1

The maximum x∗0 is attained at the Hahn-Banach extension of f from N to X. Note that
‖x∗0‖ = 1 and x∗0 ∈M⊥. Further, 〈x, x∗0〉 = d.

Step 3: Alignment. Assume there exists m0 ∈ M such that ‖x −m0‖ = d. Let x∗0 ∈ M⊥,
‖x∗0‖ = 1 obtain the maximum. Then

〈x−m0, x
∗
0︸︷︷︸

∈M⊥

〉 = 〈x, x∗0〉 = d = ‖x∗0‖︸︷︷︸
=1

‖x−m0‖

A corollary is thus: let x be an element of real normed vector space X and M be a subspace
of X. Then m0 ∈ M satisfies ‖x − m0‖ ≤ ‖x − m‖ for all m ∈ M iff there is a nonzero
x∗ ∈ M⊥ aligned with x −m0. In this sense, x −m0 is orthogonal to M , like the Hilbert
projection theorem.

Theorem 16. Let X be a real normed vector space and M be a subspace of X. Let x∗ ∈ X∗
and denote d = dist(x∗,M⊥). d = minm∗∈M⊥‖x∗ − m∗‖ is achieved at some m∗0 ∈ M⊥,
and d = supx∈M :‖x‖≤1〈x, x∗〉 = ‖x∗‖M . If the supremum is achieved at x0 ∈ M , then

x∗ − m∗0 is aligned with x0. In more natural notation, if ‖x∗‖M⊥ = dist(x∗,M⊥), then
‖x∗‖M⊥ = ‖x∗‖M .

Proof. Step 1: Prove ‖x∗ −m∗‖ ≥ ‖x∗‖M . For any m∗ ∈M⊥, we have

‖x∗ −m∗‖ = sup
‖x‖≤1

(〈x, x∗〉 − 〈x,m∗〉) ≥ sup
x∈M :‖x‖≤1

(〈x, x∗〉 − 〈x,m∗〉)

Noting that 〈x,m∗〉 = 0 for all x ∈M , we have ‖x∗ −m∗‖ ≥ ‖x∗‖M .

Step 2: Prove that the minimum is attained at some m∗0. Let y∗ be the Hahn-Banach
extension of x∗|M from M to X. Then x∗ − y∗ = 0 on M . Set m∗0 = x∗ − y∗. Then
m∗0 ∈M⊥ and ‖x∗ −m∗0‖ = ‖x∗ − x∗ + y∗‖ = ‖y∗‖ = ‖x∗‖M .

Step 3: Alignment. Assume there exists x0 ∈ M such that 〈x0, x
∗〉 = d, which from Step

1 implies that x0 = arg maxx∈M :‖x‖≤1〈x, x∗〉. Then ‖x0‖ = 1 (else 〈x0/‖x0‖, x∗〉 > d,
contradicting steps 1–2). Also,

‖x0‖‖x∗ −m∗0‖ = d = 〈x0, x
∗〉 = 〈x0, x

∗ −m∗0〉

where the last equality follows from m∗0 ∈M⊥, implying that 〈x0,m
∗
0〉 = 0.
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As an application, we will prove one of Tonelli’s theorems.

Proposition 6. If f is continuous on [a, b] and p0 is a polynomial of up to degree n min-
imising ‖f − p‖∞, then |f(t) − p0(t)| achieves its maximum on at least n + 2 points on
[a, b].

Proof. We formulate this as projecting f in space X = C[a, b] onto the (n+ 1)-dimensional
subspace M of nth degree polynomials. p0 exists by the finite-dimensionality of M . Let
d = ‖f − p0‖∞ > 0 and Γ = |f − p0|−1[{d}] denote the arg-maxima of |f − p0|. By the first
minimum norm theorem, f−p0 must be aligned with some v∗ ∈M⊥ ⊂ C[a, b]∗ = NBV [a, b].
As d > 0, v∗ 6= 0. From the alignment section, we know that v∗ varies only on Γ.

Assume by way of contradiction that |Γ| < n + 2. Let tk ∈ Γ such that v∗ varies at tk.
Then the polynomial q(t) =

∏
s∈Γ\{tk}(t − s) has at most an order of n + 1 so q ∈ M ,

but 〈q, v∗〉 =
∫ b
a
q dv∗ =

∏
s∈Γ\{tk}(tk − s) × (v∗(tk) − limt→t−k

v∗(t)) 6= 0, so v∗ /∈ M⊥.

Contradiction!

As another application, we will solve minimum norm problems with linear constraints, just
like the Hilbert Space section.

Proposition 7. Let yi ∈ X for i = 1, . . . , n and suppose D = {x∗ ∈ X∗ : 〈yi, x∗〉 = ci, i =
1, . . . , n} is nonempty (so the constraints are consistent). Then

min
x∗∈D

‖x∗‖ = max
‖Y a‖≤1

c>a.

Proof. Let M = span{y1, . . . , yn} and x̄∗ ∈ D. The n constraints define a linear variety
x̄∗ + M⊥. Hence, the problem is an x̄∗-shift of the problem of projecting −x̄∗ onto M⊥.
Thus, if we let d = min〈yi,x∗〉=ci‖x∗‖, then d = minm∗∈M⊥‖x̄∗ − m∗‖. By the second
minimum norm theorem, d = supx∈M :‖x‖≤1〈x, x̄∗〉 = sup‖

∑
i aiyi‖≤1〈

∑
i aiyi, x̄

∗〉 where the

second equality follows from the definition of M . Now 〈
∑
i aiyi, x̄

∗〉 =
∑n
i=1 ai〈yi, x̄∗〉 =∑n

i=1 aici = c>a where the second equality follows from x̄∗ ∈ D.

2.6 Weak convergence

The following convergence notions appear in decreasing order of strength. Consider {xn} in
normed vector space X.

• xn → x (strongly) if ‖xn − x‖ → 0 as n→∞
• xn ⇀ x (weakly) if 〈xn, x∗〉 → 〈x, x∗〉 as n→∞ for all x∗ ∈ X∗
• x∗n ⇀∗ x∗ (weak*) if 〈x, x∗n〉 → 〈x, x∗〉 as n→∞ for all x ∈ X

Strong implies weak as |〈xn, x∗〉 − 〈x, x∗〉| ≤ ‖x∗‖‖xn − x‖. Weak implies weak* as X∗∗

contains φ(X), where φ is the natural mapping.

More definitions:

• A set K ⊂ X∗ is weak* compact if every infinite sequence from K contains a weak*
convergent subsequence (converging to a point in K).
• A functional f : X → K is weakly continuous at x if given ε > 0, there is a δ > 0

and finite {x∗1, . . . , x∗m} ⊂ X∗ such that |f(y) − f(x)| < ε, for all y ∈ X such that
|〈y, x∗i 〉 − 〈x, x∗i 〉| < δ for all i = 1, . . . ,m.
• A functional f : X∗ → K is weak* continuous at x∗ if given ε > 0, there is a δ > 0

and finite {x1, . . . , xm} ⊂ X such that |f(y∗) − f(x∗)| < ε, for all y∗ ∈ X∗ such that
|〈xi, y∗〉 − 〈xi, x∗〉| < δ for all i = 1, . . . ,m.
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Theorem 17 (Alaoglu). Let X be a real normed vector space. The closed unit sphere in
X∗ is weak* compact.

Proposition 8. If xn ⇀ x and f is weakly continuous, then f(xn) → f(x). Similarly, if
x∗n ⇀

∗ x∗ and f is weak* continuous, then f(x∗n)→ f(x∗).

Proof. Fix ε > 0. As f is weakly continuous, there exists δ > 0 and x∗i ∈ X∗ such that
|f(y) − f(x)| < ε for all y ∈ X satisfying |〈y, x∗i 〉 − 〈x, x∗i 〉| < δ for all i = 1, . . . ,m. By
definition of weak convergence, there exists N ∈ N such that |〈xn, x∗i 〉 − 〈x, x∗i 〉| < δ for all
n ≥ N and all i. Hence |f(xn) − f(x)| < ε for all n ≥ N . For weak* convergence, simply
change the variables in the proof.

Proposition 9 (Extreme Value Theorem). Let S ⊂ X∗ be weak* compact and f : S → R
be weak* continuous. Then f is bounded on S and achieves its maximum on S.

Proof. Let {yn} ⊂ f(S) ⊂ R be an arbitrary sequence. Then there exists {x∗n} ⊂ S such that
f(x∗n) = yn for all n ∈ N. By weak* compactness, there exists subsequence {x∗nk

} such that
x∗nk

⇀∗ x∗ ∈ S. As f is weak* continuous, by the previous proposition, f(x∗nk
) → f(x∗).

Let ynk
= f(x∗nk

) for all k ∈ N and y = f(x∗). Then ynk
→ y as k → ∞, so {yn} has

a convergent subsequence and f(S) is compact. By the Heine-Borel theorem, f must be
bounded (in the traditional sense, not in the linear functional sense).

Let yn → sup f(S). Then there exists {x∗n} ⊂ S such that f(x∗n) = yn for all n ∈ N. By
weak* compactness, there exists subsequence {x∗nk

} such that x∗nk
⇀∗ x∗ ∈ S. As f is

weak* continuous, by the previous proposition, f(x∗nk
) → f(x∗). In addition, f(x∗) must

be sup f(S), so f achieves its maximum on S.

Combining Alaoglu’s Theorem and the Extreme Value Theorem, set S to be the unit sphere
in X∗ and f(x∗) = 〈x, x∗〉 for some x ∈ X, which is weak* continuous. Then the EVT tells
us that f(x∗) achieves its maximum on the unit sphere. By the first alignment theorem,
taking M = {0}, we have alignment with the optimal x∗0, so 〈x, x∗0〉 = ‖x∗0‖‖x‖ = ‖x‖, which
is equivalent to the Corollary to the Hahn-Banach Theorem.

2.7 Hyperplanes

A hyperplane H in vector space X is a maximal proper linear variety. It satisfies:

• H 6= X
• If V is a linear variety containing X, then V = H or V = X

Since H̄ is also a linear variety, then H̄ ∈ {H,X} so H is either closed or dense.

Proposition 10. Hyperplanes are pre-images under linear functionals of singleton sets.
Conversely, if f is a non-zero linear functional on X, f−1[{c}] is a hyperplane in X where
c ∈ K.

Proof. If H contains the origin, then there is a linear functional f such that H = f−1[{0}].
We can construct f by taking x1 /∈ H and defining f(x) = α where x = αx1 + h for some
h ∈ H (recall by linear independence that α and h are unique).

If H does not contain the origin, then H = x0 +M for some linear subspace M and x0 /∈M .
Then construct f(x) = α where x = αx0 +m for some m ∈M and H = f−1[{1}].
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Conversely, let M = f−1[{0}], a linear subspace of X. Let x0 ∈ X \M with f(x0) = 1. Then
for any x ∈ X, we have f(x− f(x)x0) = f(x)− f(x0)f(x) = 0, and thus x− f(x)x0 ∈ M .
Thus, x = m + f(x)x0 for some m ∈ M , and hence X = [x0 + M ]. Hence M is a proper
maximal subspace. Letting x1 ∈ M such that f(x1) = c, we have f−1[{c}] = x1 + M is a
hyperplane.

In addition, if H is not a subspace (i.e. it does not contain the origin), the representation
f−1[{1}] is unique. To prove this, assume H = f−1[{1}] = g−1[{1}]. Then H ⊂ (f −
g)−1[{0}], which is a linear subspace. But by the definition of H as a maximal linear
variety, (f − g)−1[{0}] = X so f = g.

Proposition 11. Let f be a nonzero linear functional on a normed vector space X. Then
the hyperplane H = f−1[{c}] is closed for every c ∈ K iff f is continuous/bounded.

Let f be a nonzero linear functional on vector space X. The hyperplane H = f−1[c]
determines four half-spaces (open and closed only make sense if f is continuous):

Negative Positive
Open f−1[(−∞, c)] = {x : f(x) < c} f−1[(c,∞)] = {x : f(x) > c}
Closed f−1[(−∞, c]] = {x : f(x) ≤ c} f−1[[c,∞)] = {x : f(x) ≥ c}

The proof of the hyperplane separation theorem requires the introduction of a specific sub-
linear functional, the Minkowski functional :

pK(x) = inf
{
r :

x

r
∈ K, r > 0

}
where 0 ∈ intK. Beyond sublinearity, we have p > 0, p is continuous, intK = p−1[[0, 1)],
and K = p−1[[0, 1]].

Theorem 18 (Hyperplane Separation Theorem). Let K be a convex set in real normed
vector space X, intK 6= 0, V is a linear variety in X such that V ∩ intK = 0. Then there is
a closed hyperplane in X containing V but no interior points of K. Hence there is x∗ ∈ X∗
and c ∈ R such that 〈v, x∗〉 = c for all v ∈ V and 〈k, x∗〉 < c for all k ∈ intK.

There are various other definitions and restatements (X,K are defined as in the theorem):

• A closed hyperplane H in X supports convex set K if K is contained in one closed
half-space determined by H and H ∩K 6= ∅.
• If x /∈ intK 6= ∅, then there is a closed hyperplane H containing x such that K lies on

one side of H.
• Let K1 and K2 be convex sets in X such that intK1 6= ∅ and K2 ∩ intK1 = ∅. Then

there is a closed hyperplane H separating K1 and K2. That is to say, there is an
x∗ ∈ X∗ such that supx∈K1

〈x, x∗〉 ≤ infx∈K2
〈x, x∗〉.

• Let K be closed and convex and x /∈ K. Then there is a closed half-space containing
K but not x.
• Let K be closed and convex. Then K is the intersection of all closed half-spaces

containing it.
• The support functional of K is h(x∗) = supx∈K〈x, x∗〉.

Finally, there is another dual theorem:

Theorem 19. Let X be a real normed vector space and K be a convex subset with sup-
port functional h. Let x1 ∈ X and d = dist(x1,K) = infx∈K‖x − x1‖. Then d =
max‖x∗‖≤1

(
〈x1, x

∗〉 − h(x∗)
)
, achieved at some x∗0 ∈ X∗. If the infimum is achieved at

x0 ∈ K, then −x∗0 is aligned with x0 − x1.
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3 Hilbert Space exercises

Q3.1 Show that |(x|y)| = ‖x‖‖y‖ iff αx+ βy = 0 for some scalars α, β.

Take the usual proof of the inequality and notice that 0 = (x − λy|x − λy) if and only if
x− λy = 0 by the property of the inner product.

Q3.2 Consider the set X of real functions x defined in R for which

lim
T→∞

1

2T

∫ T

−T
|x(t)|2dt <∞.

Let M be the subspace where the limit is zero. Part (a) is trivial: show that the space
H = X/M becomes a pre-Hilbert space when the inner product is defined as

([x]|[y]) = lim
T→∞

1

2T

∫ T

−T
x(t)y(t)dt.

Part (b): show that H is not separable.

Q3.3 Let H consist of all m × n real matrices with addition and scalar multiplication
defined as the usual corresponding operations with matrices, and with the inner product of
two matrices A,B defined as

(A|B) = tr(A>QB)

where Q is a symmetric, positive-definite m×m matrix. Prove that H is a Hilbert space.

Symmetry and linearity are trivial to show. As Q is positive-definite, if A 6= 0, then letting
A =

[
a1 . . . an

]
with some ai 6= 0, we have that

A>QA =

a
>
1
...
a>n

Q [a1 · · · an
]

=

a
>
1 Qa1 . . . a>1 Qan

...
. . .

...
a>nQa1 . . . a>nQan


By the positive-definiteness of Q, a>i Qai ≥ 0 and strictly if ai 6= 0. Then (A|A) =
tr(A>QA) =

∑n
i=1 a

>
i Qai > 0. On the other hand (0|0) = tr(0) = 0.

Let {Aj} be a Cauchy sequence in H. Then ‖Aj − Ak‖2 → 0 as j, k → ∞. Hence (Aj −
Ak|Aj −Ak)→ 0 as j, k →∞. Hence

n∑
i=1

(a
(j)
i − a

(k)
i )>Q(a

(j)
i − a

(k)
i )→ 0 as j, k →∞

Now (a
(j)
i − a

(k)
i )>Q(a

(j)
i − a

(k)
i ) ≥ 0 for all i by the positive definiteness of Q. Hence we

must have (a
(j)
i − a

(k)
i )>Q(a

(j)
i − a

(k)
i )→ 0 as j, k →∞ for all i = 1, . . . , n. By the positive

definiteness of Q, we must have a
(j)
i − a

(k)
i → 0 as j, k →∞. Therefore, we have that {a(j)

i,l }
is a Cauchy sequence in R for all i = 1, . . . ,m and l = 1, . . . , n. By the completeness of R,

we have that {a(j)
i,l } → ai,l ∈ R and therefore Aj → [ai,l]i=1,...,m, l=1,...,n as j → ∞. Hence

H is complete and therefore a Hilbert space.

Q3.4 Show that if g(y1, . . . , yn) = 0, the normal equations possess a solution but it is not
unique.

Say if rankG = m. Then take y1, . . . , ym to be a LI set of vectors (rearranging if necessary).
From the proposition, we know that G(y1, . . . , ym)(α1, . . . , αm)> = ((x|y1), . . . , (x|ym))>



Nick Cao 13

has a unique solution. Set k = 1, . . . , n − m. Then ym+k =
∑n
j=1 βjyj where some βj is

nonzero. Then:

n∑
i=1

(yi|ym+k)αi =

n∑
i=1

(yi|
∑
j βjyj)αi

=
∑
j

βj

n∑
i=1

αi(yi|yj)

=
∑
j

βj(x|yj) from solution

= (x|
∑
j βjyj) = (x|ym+k)

Hence (α1, . . . , αm, 0, . . . , 0)> is a solution to the normal equations. However, as there is
more than one way to choose a set of LI vectors out of y1, . . . , ym, this solution cannot be
unique.

Q3.5 Find the linear function x(t) = a+ bt minimising
∫ 1

−1
[t2 − x(t)]2dt.

Let pk(t) = tk. The problem is to minimise ‖x − p2‖L2[−1,1], where x ∈ span{1, p1}. From
the projection theorem, (x− p2)⊥ span{1, p1}. Hence, (x− p2)⊥1:

0 =

∫ 1

−1

[t2 − bt− a]dt =
1

3
[t3]1−1 −

1

2
b[t2]1−1 − a[t]1−1 =

2

3
− 2a

and hence a = 1/3. In addition, (x− p2)⊥p1:

0 =

∫ 1

−1

[t2 − bt− a]t dt =
1

4
[t4]1−1 −

1

3
b[t3]1−1 −

1

2
a[t2]1−1 = −2

3
b

and hence b = 0. The projection is x(t) = 1/3.

Q3.6 Given a function x ∈ L2[0, 1], we seek a polynomial p of degree n or less which

minimises
∫ 1

0
|x(t)− p(t)|2dt while satisfying

∫ 1

0
p(t)dt = 0.

Part (a): Show that this problem has a unique solution. The space of polynomials of degree

n or less satisfying
∫ 1

0
p(t)dt = 0 form a closed linear subspace. To prove that it is closed,

consider a convergent sequence pk. If
∫ 1

0
pk(t)dt = 0 for all k and pk → p (which is indeed

a degree ≤ n polynomial by the finite-dimensionality and hence closedness of that space),
then by the Cauchy-Schwarz inequality,∫ 1

0

|pk(t)− p(t)|dt ≤
(∫ 1

0

|pk(t)− p(t)|2dt
)1/2(∫ 1

0

dt

)1/2

→ 0 as k →∞.

By the triangle inequality for integrals:∣∣∣∣∫ 1

0

pk(t)dt−
∫ 1

0

p(t)dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

pk(t)− p(t)dt
∣∣∣∣ ≤ ∫ 1

0

|pk(t)− p(t)|dt

and by the reverse triangle inequality,∣∣∣∣∫ 1

0

pk(t)dt

∣∣∣∣− ∣∣∣∣∫ 1

0

p(t)dt

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

pk(t)dt−
∫ 1

0

p(t)dt

∣∣∣∣→ 0 as k →∞.

Hence ∫ 1

0

p(t)dt = lim
k→∞

∫ 1

0

pk(t)dt = 0.

Then the existence of a unique solution is guaranteed by the projection theorem.
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Part (b): Show that this problem can be solved by firs finding the polynomial q of degree

n or less which minimises
∫ 1

0
|x(t) − q(t)|2dt and then finding p of degree n or less which

minimises
∫ 1

0
|q(t)− p(t)|2dt while satisfying the requirement

∫ 1

0
p(t)dt = 0.

Denote the degree≤ n polynomials by P and the subset of polynomials satisfying the integral
requirement as P0 ⊂ P . By the projection theorem, (x − q)⊥P and (q − p)⊥P0. Then Let
p̃ ∈ P0 ⊂ P be arbitrary. We have that (x−p|p̃) = (x−q+q−p|p̃) = (x−q|p̃)+(q−p|p̃) = 0
and hence x− p⊥P0. Hence by the projection theorem, p is indeed the minimiser.

Q3.7 Let M and N be orthogonal closed subspaces of a Hilbert space H and let x be an
arbitrary vector in H. Show that the subspace M ⊕ N is closed and that the orthogonal
projection of x onto M ⊕N is equal to PM (x) + PN (x).

Let yk ∈ M ⊕ N and let yk → y. Now yk = mk + nk admits a unique representation for
mk ∈M and nk ∈ N . We have that for all ε > 0, there exists K ∈ N such that ‖yk−y‖ < ε,
for all k ≥ K. Thus, ‖mk + nk − PM (y) + PM (y) − y‖ < ε, for all k ≥ K, where PM (y)
exists due to the projection theorem. Now mk − PM (y) ∈ M and y − PM (y) ∈ M⊥ by the
projection theorem. As nk ∈ N ⊂M⊥, we deduce that nk + PM (y)− y ∈M⊥ (as M⊥ is a
linear subspace of H). By Pythagoras’s theorem, we may deduce that

‖mk − PM (y)‖2 + ‖nk + PM (y)− y‖2 < ε2, ∀k ≥ K

and hence mk → PM (y) as k →∞. Similarly, nk → PN (y) as k →∞. Hence y has a unique
representation PM (y) + PN (y) ∈M ⊕N , so we may deduce that M ⊕N is closed.

Let x ∈ H, m ∈M , and n ∈ N be arbitrary. We have that(
x− PM (x)− PN (x)|m+ n

)
=
(
x− PM (x)|m

)
+
(
x− PN (x)|n

)
= 0

as (x−PM (x))⊥m and (x−PN (x))⊥n by the projection theorem. Further, as PM (x) ∈M ,
PN (x) ∈ N , and M⊥N , then PM (x)⊥n and PN (x)⊥m. Hence, by the projection theorem,
PM⊕N (x) = PM (x) + PN (x).

Q3.9 Prove that if S ⊂ H, then S⊥⊥ = [S].

We know that H = S⊥ ⊕ S⊥⊥ as S⊥ is a closed linear subspace. We also know that

H = [S]⊕ [S]
⊥

. Now S ⊂ [S] implies that [S]
⊥
⊂ S⊥. We shall prove the reverse inclusion:

let x ∈ S⊥ and y ∈ [S]. Then there exists a sequence yn ∈ [S] such that yn → y. Now for
all n ∈ N, yn =

∑
k βnksnk is a finite sum with scalars βnk and snk ∈ S for all n, k. Hence

(x|yn) = (x|
∑
k βnksnk) =

∑
k βnk(x|snk) = 0.

Using the continuity of the inner product,

(x|y) =
(
x
∣∣ lim
n→∞

yn
)

= lim
n→∞

(x|yn) = 0

and hence S⊥ ⊂ [S]
⊥

. Hence S⊥ = [S]
⊥

and hence S⊥⊥ = [S].

Q3.10 A Hilbert space H of functions on a set S is said to be a reproducing kernel Hilbert
space if there is a function K defined on S × S having the properties:

1. K(·, t) ∈ H for each t ∈ S
2. x(t) = (x|K(·, t)) for each x ∈ H, t ∈ S.

Such a function K is called a reproducing kernel.

Prove that a reproducing kernel, if it exists, is unique.
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Assume by way of contradiction that K1 and K2 are reproducing kernels of H, and K1 6= K2.
Then K1(·, t)−K2(·, t) 6= 0. From part 1 of the definition and because H is a linear space,
K1(·, t)−K2(·, t) ∈ H. By the positive definiteness of the inner product,(

K1(·, t)−K2(·, t)|K1(·, t)−K2(·, t)
)
> 0

=⇒
(
K1(·, t)−K2(·, t)|K1(·, t)

)
>
(
K1(·, t)−K2(·, t)|K2(·, t)

)
But this contradicts part 2 of the definition.

Q3.13 Show that the Gram determinant g(x1, . . . , xn) is never negative.

Note: For n = 2, this is the Cauchy-Schwarz inequality. In fact, we are generalising it.
Further, we will prove something stronger, that G is positive semi-definite.

Let y ∈ Rn. Then

y>Gy =

n∑
i=1

n∑
j=1

yiyj(xi|xj) =

n∑
i=1

n∑
j=1

(yixi|yjxj) =

( n∑
i=1

yixi

∣∣∣∣ n∑
j=1

yjxj

)
where we use the linearity of the inner product. Then changing the index, we have

y>Gy =

( n∑
i=1

yixi

∣∣∣∣ n∑
i=1

yixi

)
≥ 0

by the positive definiteness of the inner product.

Q3.14 Let {y1, . . . , yn} be LI vectors in pre-Hilbert space X and x ∈ X. Show that the
best approximation to x in the subspace generated by {yi} has the explicit representation

x̂ =

∣∣∣∣∣∣∣∣∣
(y1|y1) . . . (yn|y1) (x|y1)

...
. . .

...
...

(y1|yn) . . . (yn|yn) (x|yn)
y1 . . . yn 0

∣∣∣∣∣∣∣∣∣
−g(y1, . . . , yn)

.

Show that the minimum error x̂− x is given by

x̂− x =

∣∣∣∣∣∣∣∣∣
(y1|y1) . . . (yn|y1) (x|y1)

...
. . .

...
...

(y1|yn) . . . (yn|yn) (x|yn)
y1 . . . yn x

∣∣∣∣∣∣∣∣∣
−g(y1, . . . , yn)

.

Denote x̂ = α1y1 + · · ·+ αnyn. Then using the Gram matrix and Cramer’s rule, we deduce
that

αi =

∣∣∣∣∣∣∣
(y1|y1) . . . (yi−1|y1) (x|y1) (yi+1|y1) . . . (yn|y1)

...
...

...
...

...
(y1|yn) . . . (yi−1|yn) (x|yn) (yi+1|yn) . . . (yn|yn)

∣∣∣∣∣∣∣
g(y1, . . . , yn)

Then we can move the ((x|y1), . . . , (x|yn))> term to the end, which involves n− i pairwise
interchanges of rows. As each pairwise interchange reverses the sign of the determinant, we
have:

αi = (−1)n−i

∣∣∣∣∣∣∣
(y1|y1) . . . (yi−1|y1) (yi+1|y1) . . . (yn|y1) (x|y1)

...
...

...
...

...
(y1|yn) . . . (yi−1|yn) (yi+1|yn) . . . (yn|yn) (x|yn)

∣∣∣∣∣∣∣
g(y1, . . . , yn)
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Hence

x̂ =

n∑
i=1

(−1)n−i

∣∣∣∣∣∣∣
(y1|y1) . . . (yi−1|y1) (yi+1|y1) . . . (yn|y1) (x|y1)

...
...

...
...

...
(y1|yn) . . . (yi−1|yn) (yi+1|yn) . . . (yn|yn) (x|yn)

∣∣∣∣∣∣∣
g(y1, . . . , yn)

yi

=

∣∣∣∣∣∣∣∣∣
(y1|y1) . . . (yn|y1) (x|y1)

...
. . .

...
...

(y1|yn) . . . (yn|yn) (x|yn)
y1 . . . yn 0

∣∣∣∣∣∣∣∣∣
−g(y1, . . . , yn)

.

Note that we must introduce the negative sign (in the denominator for notational clarity)
because when n− i is odd, the checkerboard pattern of the determinant treats yi positively
and when n− i is even, the checkerboard pattern of the determinant treats yi as negative.

For x̂−x, note that the checkerboard pattern keeps all terms on the main diagonal positive.
Therefore, we have that the right hand side is

x̂+ x

∣∣∣∣∣∣∣
(y1|y1) · · · (yn|y1)

...
. . .

...
(y1|yn) · · · (yn|yn)

∣∣∣∣∣∣∣
−g(y1, . . . , yn)

= x̂− xg(y1, . . . , yn)

g(y1, . . . , yn)
= x̂− x.

Q3.16

Proposition 12 (Parseval’s Equality). An orthonormal sequence {ei} is complete in a
Hilbert space H iff for all x, y ∈ H,

(x|y) =

∞∑
i=1

(x|ei)(ei|y).

Prove Parseval’s equality.

Assume {ei} is a complete orthonormal sequence. Then x =
∑
i(x|ei)ei and y =

∑
i(y|ei)ei.

Then we have

(x|y) =

( ∞∑
i=1

(x|ei)ei
∣∣∣∣ ∞∑
j=1

(y|ej)ej
)

=

∞∑
i=1

∞∑
j=1

(x|ei)(ej |y) (ei|ej)︸ ︷︷ ︸
=δij

=

∞∑
i=1

(x|ei)(ei|y)

where δij denotes the Dirac delta function.

Assume Parseval’s equality holds. Then say if y ∈ H is orthogonal to the subspace generated
by {ei}. This implies that (ei|y) = 0 for all i. Then (x|y) = 0 for all x ∈ H by the equality.
In particular, (y|y) = 0, and therefore y = 0 by the positive definiteness of the inner product.

Hence the only element of [{ei}]
⊥

is 0, and thus {ei} is a complete orthonormal sequence.
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Q3.17 Let {y1, . . . , yn} be LI and suppose {e1, . . . , en} are obtained from the yis by the
Gram-Schmidt procedure. Let

x̂ =

n∑
i=1

(x|ei)ei =

n∑
i=1

αiyi.

Show that the coefficients αi can be easily obtained from the Fourier coefficients (x|ei).

We know that yi =
∑n
j=1(yi|ej)ej as the yis lie in the space spanned by {ei}. Hence

n∑
j=1

(x|ej)ej = x̂ =

n∑
i=1

αiyi =

n∑
i=1

αi

n∑
j=1

(yi|ej)ej =

n∑
j=1

n∑
i=1

αi(yi|ej)ej

Hence we have (x|ej) =
∑n
i=1 αi(yi|ej) for all j = 1, . . . , n. Thus the various αi be be

obtained by solving the linear system
(y1|e1) (y2|e1) . . . (yn|e1)
(y1|e2) (y2|e2) . . . (yn|e2)

...
...

. . .
...

(y1|en) (y2|en) . . . (yn|en)



α1

α2

...
αn

 =


(x|e1)
(x|e2)

...
(x|en)



Q3.21 Using the projection theorem, solve the finite-dimensional problem:

minx>Qx

subject to Ax = b

where x is an n-vector, Q a positive-definite symmetric n×n matrix, A an m×n (m < n),
and b an m-vector.

Define the inner product (x|y) = x>Qy. This is linear and the positive-definiteness of Q
guarantees positive definiteness of the inner product. The problem can be formulated as a
minimum norm problem: minimise ‖x‖2 in Rn such that Ax = b. Write

A =

a
>
1
...
a>m


where we must be careful to note that ai is the ith row of A, and not the ith column.
The constraint may be written as a>i x = bi for i = 1, . . . ,m. We may rewrite this as
a>i Q

−1Qx = bi, and hence (Q−1ai|x) = bi (note that Q being symmetric implies that Q−1

is also symmetric). By the theorem, the (unique) solution takes the form

x0 =

m∑
i=1

βiQ
−1ai = Q−1

[
a1 . . . am

]
β = Q−1A>β

where the βi are chosen to satisfy Ax0 = b. Expanding, we have

Ax0 = AQ−1A>β

Notice that if A is full rank, then by the positive definiteness of Q, we have AQ−1A> is full
rank and therefore β = (AQ−1A>)−1b. Therefore, x0 = Q−1A>(AQ−1A>)−1b, although
this seems wrong.

Q3.24 The following theorem is valid in a Hilbert space H. If K is a closed convex set in
H and x ∈ H, x /∈ K; there is a unique vector k0 ∈ K such that ‖x− k0‖ ≤ ‖x− k‖ for all
k ∈ K.
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Show that this theorem does not apply in arbitrary Banach space.

Consider the space R2 endowed with the supremum norm. The set K = R+×R is closed (by
the equivalence of the p-norms) and convex. Consider x = (−1, 0). Then mink∈R+×R‖x −
k‖ = 1, but candidates for the argmin k0 include the entire set {0} × [−1, 1].

4 Dual Space Exercises

Q5.1 Define linear functional f on L2[0, 1] by

f(x) =

∫ 1

0

a(t)

∫ t

0

b(s)x(s) ds dt

where a, b ∈ L2[0, 1]. Show that f is a bounded linear functional and find y ∈ L2 such that
f(x) = (x|y).

Let c(t) =
∫ t

0
b(s)x(s) ds. Then f(x) = (a|c). By the Cauchy-Schwarz inequality, |f(x)| ≤

‖a‖‖c‖. Now

‖c‖ =

∫ 1

0

∣∣∣∣∫ t

0

b(s)x(s)ds

∣∣∣∣2 dt ≤ ∫ 1

0

(∫ t

0

|b(s)x(s)| ds
)2

dt ≤
∫ 1

0

∫ t

0

|b(s)|2ds
∫ t

0

|x(s)|2ds dt

where the first inequality is the triangular inequality for integrals and the second inequality
is the Cauchy-Schwarz inequality. Hence

‖c‖ ≤
∫ 1

0

∫ 1

0

|b(s)|2ds
∫ 1

0

|x(s)|2ds dt = ‖b‖‖x‖
∫ 1

0

dt = ‖b‖‖x‖

Hence |f(x)| ≤ ‖a‖‖b‖‖x‖ and thus f is a bounded linear functional. Note that

f(x) =

∫ 1

0

∫ t

0

a(t)b(s)x(s) ds dt =

∫ 1

0

∫ 1

s

a(t)b(s)x(s) dt ds

by considering the region in R2 over which integration is taken. Hence

f(x) =

∫ 1

0

b(s)

∫ 1

s

a(t) dt x(s) ds

so y(s) = b(s)
∫ 1

s
a(t) dt.

Q5.2 Characterise the dual space of c, the space of convergent sequences.

Let x ∈ c. Then

|f(x)| = |f(
∑∞
i=1 xiei)| =

∣∣∣∣ ∞∑
i=1

xif(ei)

∣∣∣∣ ≤ ‖x‖∞∣∣∣∣ ∞∑
i=1

yi

∣∣∣∣ = ‖x‖∞‖y‖1

where the second equality follows from the linearity of f . As x ∈ c arbitrary, ‖f‖ ≤ ‖y‖1.

Conversely, consider x(N) such that x
(N)
i = sign(yi)1[i≤N ]. As x

(N)
i → 0, we have x(N) ∈ c,

and ‖x(N)‖ = 1. We have

f(x(N)) = f(
∑∞
i=1 x

(N)
i ei) =

N∑
i=1

|yi| =
N∑
i=1

|yi|‖x(N)‖∞

recalling that ‖x(N)‖∞ = 1. By the definition of the operator norm,
∑N
i=1 |yi| ≤ ‖f‖. As

N ∈ N arbitrary, we can take N →∞ and deduce that ‖y‖1 =
∑∞
i=1 |yi| ≤ ‖f‖.
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Combining the two inequalities, we have ‖y‖1 = ‖f‖. Hence the dual of c is `1, where we
associate each y ∈ `1 with the bounded linear functional f(x) =

∑∞
i=1 xiyi.

Q5.3 Let X∗ be the dual of normed space X. Show that if X∗ is separable, then X is
separable.

Q5.4 Show that the normed space C[a, b] is not reflexive.

C[a, b] is separable by the Stone-Weierstrass Theorem. Consider δx, δy, the Dirac delta
function for x, y ∈ [a, b] and x 6= y. Then ‖δx − δy‖ = 2 in the total variation norm. Hence
there are uncountably infinite disjoint open balls of the form B(δx, 1) with x ∈ [a, b], all of
which are subsets of NBV [a, b]. Hence NBV [a, b] is not separable, and its dual cannot be
the separable space C[a, b] by Question 5.3.

Q5.5 Prove that x ∈ Lp is aligned with y ∈ Lq iff x(t) = K sign(y(t))|y(t)|q/p.

If:

〈y, x〉 =

∫ b

a

x(t)y(t) dt = K

∫ b

a

|y(t)|1+q/p dt = K

∫ b

a

|y(t)|q dt

and we have

‖x‖ =

(∫ b

a

|x(t)|p dt
)1/p

= K

(∫ b

a

|y(t)|q dt
)1/p

and

‖y‖ =

(∫ b

a

|y(t)|q dt
)1/q

.

Hence

‖x‖‖y‖ = K

(∫ b

a

|y(t)|q dt
)1/p+1/q

= K

∫ b

a

|y(t)|q dt = 〈y, x〉

Only if: the proof of Hölder’s Inequality proceeds by Young’s Inequality, which shows that
for any positive s, t that st ≤ sp/p+ tq/q. As this proof uses the concavity of the logarithm,
we have inequality if sp = tq, and Hölder uses s = |x|/‖x‖ and t = |y|/‖y‖. Thus, 〈|y|, |x|〉 =
‖x‖‖y‖ if and only if (|x|/‖x‖)p = (|y|/‖y‖)q. Thus, |x|p = |y|q × ‖x‖p/‖y‖q. Setting
Kp = ‖x‖p/‖y‖q, we have |x|p = Kp|y|q and |x| = K|y|q/p. Finally, for alignment, we need
to ensure that 〈y, x〉 = 〈|y|, |x|〉, which is guaranteed if signx = sign y.

Q5.6


