OPTIMISATION NOTES following
OPTIMISATION BY VECTOR SPACE METHODS by David G. Leunberger
Nick Cao

1 Hilbert Spaces

Recall that an inner product (-|-) satisfies:

L. (zly) = (y|x)
2. (z +ylz) = (z[2) + (y]2) and (Az]y) = A(zly)
3. (x]|z) > 0 with equality iff z =0

Some basic facts include:

o |(z[y)| < |lz|l|lyll with equality iff = Ay or y = 0 (Cauchy Schwarz Inequality)

o /(z|r) = ||z|| defines a norm
e (z|y) =0 for all y implies = 0, the proof is to set y = 2 and use property (3) in the
definition

lz+ylI?+ |z —yl|* = 2||=||*+2||y||* (Parallelogram Law), the proof requires expansion
e A Hilbert Space is a complete inner product space

Lemma 1 (Continuity of the Inner Product).

Proof. Let z,, —» x and y, — y. Then

|(@nlyn) — (@[y)] = | (@nlyn) — (@nly) + (2aly) — (z]y)]
< | (@nlyn — v)| + | (zn — 2|y)|
< lzallllyn — yll + lzn — zllllyl  (C-S)
< Mllyn —yll + lzn — 2|llyll — 0. O

1.1 Projection

If (z|y) = 0, then zLy. Further, ||z +y||* = [|z[|* + [|y|*.
Theorem 1. Let X be an inner product space, M a subspace of X, x € X. If there is a
vector mg € M such that ||x —mo||*> < ||z —m]| for allm € M, then mq is unique. Further,

x —mgo € M+ necessarily; this is also sufficient.

Such a projection mg is guaranteed to exist if X is complete (ie, a Hilbert space) and M is
closed.

1.2 Orthogonal Complements

Define the orthogonal complement S+ = {z € X : 215, Vs € S}. St is necessarily a closed
subspace (closed by the continuity of the inner product). Further:

e S C T implies T+ c S+
e SC[S] =08+t

Define the direct sum: X = M @ N if for all z € X, there exist unique m € M and n € N
such that X = M + N.

Theorem 2. If M is a closed linear subspace of a Hilbert space H, then H = M & M~ and
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M =M+t

Proof. That H = M + M~ follows from the projection theorem. For uniqueness, if =
mo 4+ ng = mq +mn1, then mg —mq +ng—n1 =0. Asmg—mq € M and ng —ny € M+,
Pythagoras’s Theorem states that 0 = mg—m; = ng—ny so the representation is unique. [

Proposition 1. An orthogonal set of nonzero vectors is a LI set.

Proof. Let {x1,...,2,} be a finite subset of the orthogonal set. Take scalars ay, ..., a, such
that Y7 | ayz; = 0. Then

E a;(xilxy) = <§ ;T

Hence, as z # 0, (vg|zg) > 0 and o = 0. Inducting (relying on AC if set is infinite),
a; = 0 for all 4. O

l‘k) O|$k) =0.

Theorem 3 (Gram-Schmidt). Let {x;} be a finite or countable sequence of LI vectors in
inner product space X. Then there exists orthonormal sequence {e;} such that

le1,. .. en] = [x1,...,2n], YneN.
Proof. Set e; = x1/||z1], 2n = Tn — Z?;ll(xn|ei)ei, and e, = z,/||zn]|- O
1.3 Approximations
Say if we want to project x € H into [yi1,...,yn], & closed subspace of H. Denote the

projection as a1y + - -+ + ap¥yn. By the projection theorem,
(z—oayr =+ — ann|yi) =0
foralli =1,...,n. Arranging, we have:

(lyr)on + -+ (ynly1)an = (2]y1)

(y1|yn)a1 et (yn|yn)an = (x|yn)

and thus
(wilyr) - (ynlyr) | [ (z[y1)

(yl|yn) (yn|yn) an (w‘yn)

Transpose of Gram matrix

The determinant of the Gram matrix G is denoted g(y1, ..., Yn)-

Proposition 2. g(y1,...,yn) #0 iff y1,...,yn are LL

Proof. We shall prove the contrapositive: ¢(y1,...,y,) = 0 iff y1,...,y, are LD. As-
sume yi,...,Yy, are LD. There exist a1,...,a,, not all zero, such that 2?21 a;y; = 0.
We must therefore have that (31, aiyi|yj) =0 for all j = 1,...,n. Then (y,ly;) =
Yo (—aifan)(yily;) for all j, so G must be rank deficient and g = 0. Conversely, if
(311 euyi|y;) = 0 for all j and with some a; not zero, then 0 = D (O cuwily;) =

(i ayi| X5 agyy) = 120 il O
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Theorem 4. Let yi,...,y, be LI Let § be the minimum distasnce from x to the subspace
M generated by {y;}. Then
62 — g(yla"'vyn’x)
91,5 yn)

1.4 Abstract Fourier Series

Theorem 5. Let {e;} be an orthonormal sequence in a Hilbert space H. A series of the
form >"32, &ie; converges to some x € H iff Y oo, |&i]* < 0o. In that case, & = (x|e;).

Lemma 2 (Bessel’s Inequality). Let x be an element in a Hilbert space H and suppose {e;}
is an orthonormal sequence in H. Then Zzl‘(ﬂeﬁf < ||l=||3.

Theorem 6. Let x be an element in a Hilbert space H and suppose {e;} is an orthonormal
sequence in H. Then the series Y .- | (x]e;)e; converges to an element & in the closed subspace

M = [{e;}2,]. The residual x — & is orthogonal to M.

Lemma 3. An orthonormal sequence {e;} in o Hilbert space H is complete (ie, [{e;}2,] =
H ) iff the only vector orthogonal to each e; is the null vector.

Proof. This follows from H = M @& M*. O

A corollary of the previous lemma (but a long proof involving the Weierstrass Approximation
Theorem) is that the countable space of polynomials is dense in Ls[a, b].

The practical implication of this section is that we don’t have to solve the linear system

Ga=((z|ly),..., (ac|yn))T to find the projection. Instead, we can use Gram-Schmidt to
turn {y1,...,yn} into {e1,...,e,} and then find & = Y. (z|e;)e;.

1.5 Other Minimum Norm Problems
We move onto our first generalisation of the projection theorem.

Theorem 7. Let M be a closed subspace of a Hilbert space H. Let x € H andV :=xz+ M.
Then there exists a unique Ty € V' of minimum norm. Furthermore, xo LM (not xyLlV ).

Proof. This is an z-shift of the problem of projecting —z onto M. O

Theorem 8. Let H be a Hilbert space and y1,...,y, € H be LI. Among all vectors v € H
satisfying (x|y;) = ¢; fori=1,... n, let xg have the minimum norm. Then xg € [y1,. .., Yn]
and may be written as
n
w0 =Y Bivi
i=1

where satisfying (xoly;) = ¢; for i =1,...,n necessitate

(W1ly1)Br + -+ (Ynly1) Bn = 1

(yl‘yn>51 +o 4+ (yn|yn)ﬂn = Cn.

This is equivalent to GT8 = c.
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Proof. Let M = [y1,...,yn]. The n constraints define a “linear variety” (shifted linear
subspace) x + M=+, where € H satisfies the n constraints. By the restated projection
theorem, xg € ML, As M is a closed subspace, M = ML, The condition G'8 = ¢
ensure xg € M. O

Do go back and read Example 1 on page 66, it’s truly great.
Duality: Let M be a closed subspace of Hilbert space H and let x € H. The two problems:

1. project z onto M
2. project x onto M+

are complete symmetric because M+ = M. If mg is the projection of z onto M, then
x —mgy € M~ is the projection of 2 onto M.

The second generalisation of the projection theorem is to convex sets:

Theorem 9. Let x be a vector in a Hilbert space H and let K be a closed convex subset of
H. Then there is a unique vector kg € K such that

[z = Koll < [lz — Kl

for all k € K. PFurthermore, a necessary and sufficient condition that kg be the unique
minimising vector is that (x — kolk — ko) <0 for all k € K.

2 Dual Spaces

2.1 Linear Functionals

Let X be a vector space with the scalar field K. A functional is a map f: X — K. A linear
functional satisfies f(ax + By) = af(z) + 8f(y) for any z,y € X and «, f € K. Some basic
facts about linear functionals on normed spaces:

e If a linear functional is continuous at a single point, it is continuous everywhere.

e A linear functional is bounded if there is some M such that |f(z)| < M|z| for all
reX.

e A linear functional is bounded iff it is continuous.

The functional norm is thus defined:

1]l = inf{M : |f(2)] < Mall, Ve € X} = sup 2O = up 7(2)) = sup ()]
M a£0 ||z llell<1 llll=1

The space of all bounded linear functionals over X is denoted X* and is called the (topolog-
ical) dual of X. Tt is a linear space when additional and scalar multiplication are defined in
the usual way for functions.

Theorem 10. If X is a Banach space, then X* is a Banach space.

Proof. Let {z}} be Cauchy in X*. Then ||z} —x || = 0asn,m — 0. Then |z} (z)—z},(z)] <
|zt — 22 |lllz]] — 0. Then z}(z) — z*(z) € K by the completeness of K. By the linearity
of limits, z* is a linear functional. Now for all ¢ > 0, there exists NV € N such that
|k (x) — %, (2)| < €llz|| for all n,m > N. Take m — oo, we have |z%(z) — z*(z)| < €||z]],
so ||z — 2z*|| < e and thus z}, — z*. Finally, we show that z* is bounded: |z*(z)| <
2% (2) — a5 (2)| + |27, (2)] < (e + ||z ]| z]| for any n > N. O

n
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Proposition 3. The dual of R™ (with the usual norm) is R™, i.e. a bounded linear func-
tional f can be represented by f(x1,...,2,) = Doy yiz; for y; € R and every y € R"
defines a bounded linear functional f in the same way.

Proof. 1t is obvious that the f defined by y is linear. Now

)] = |20, gems] < [0, w22, 222 = |, 2] x|

where we make use of the Cauchy-Schwarz inequality. Equality is achieved at x = y and thus

Ifll = ‘El L Yi ‘1/2 |y|. Thus, there is a one-to-one correspondence between f € (R™)*
and y € R".

Let f be a bounded linear functional. Then

= f(é ziei> = Zz;l“z‘f(@i)

Setting y; = f(e;), we obtain f in the desired form. Setting x =y, we obtain f(y) = |y]|
and hence ||f|| = |ly]l (again || f|| < |ly|| because of Cauchy-Schwarz). O

Proposition 4. The dual of ¢, is ¢y (1/p+1/qg =1, p < 00), i.e. a bounded linear functional

[ can be represented by f(x) = > .o, yiz; where y € £y, and every y € £, defines a bounded
linear functional f in the same way. Also, ||f] = ||yllq-

Proof. Let f be a bounded linear functional. Then

= f<z xiei) = sz'f(ei) = inyi
i=1 i=1 i=1

where we set y; = f(e;).

Suppose 1 < p < co. Consider the sequence 2(V) € £, such that :EEN) = |y;| P sign(y;)Lj<n).
N 1/
Now ||33(N)||p = (21:1 ‘yi|q) p» and

N N 1/q
#) Z|y|q/f’+1 Z|yﬂ=(2|yi|q) ™).
=1 =1

By the definition of the functional norm, (Y, |yi|q)1/q < |If|l. Taking N — oo, we see
that [lyllq < ||f]] and thus y € ¢,.
It is obvious that the f defined by y is linear. Now

o) = |02 v < |20 PP, 21V = gl

where we make use of the Hélder inequality. Hence ||f]| < |ly|l; and hence y defines a
bounded linear functional f.

Combining the two inequalities, we see that ||f|| = ||yll4-
For p = 1, repeat the proof with () = sign(yn) en- O
Proposition 5. The dual of L,(Q, A, 1) is Lg(2, A w (I/p+1/g =1, p < 00), i.e. a

bounded linear functional f can be represented by flx fQ xydp where y € Lq, and every
y € Ly defines a bounded linear functional f in the same way. Also, || f|| = ||lyllq-
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Proof. Use lots of measure theory. O

Theorem 11 (Riesz Representation Theorem). If f is a bounded linear functional on a
Hilbert space H, there exists a unique vector y € H such that for all x € H, f(z) = (x|y).
Furthermore, we have || f|| = ||y|| and every y determines a unique bounded linear functional
in this way. A Hilbert space is its own dual.

Proof. Let N = f~'[{0}], which is a closed subspace of H. Now H = N @® N+t. If N = H,
then f = 0 and y = 0. If N # H, then there exists = € N+. As Nt is a subspace,
we can take z such that f(z) = 1. Then for any x € H, we have x — f(z)z € N as
flx— f(z)z) = f(x) — f(x)f(2) = 0. Then zLN implies that (z — f(x)z|z) = 0 and that
(z]2) = f(x)(2]|2) and hence we get the theorem by taking y = z/| 2. O

Let us define a function of bounded variation: v : [a,b] — R is of bounded variation if

up{g o) — v(zi )|

and the supremum is called the total variation of v.

{zo,...,2,} is a partition of [a, b]} < o0

Theorem 12 (Riesz-Kakutani-Markov Representation Theorem). Let f be a bounded linear
functional on X = Cla,b]. Then there is a function v of bounded variation on [a,b] such
that

b
f(x) :/ z(t)dv(t), VrxeX

and || f|| is the total variation of v. Conversely, every function of bounded variation on [a,b]
defines a bounded linear functional on X in this way.

More generally, if X is a locally compact Hausdorff space, there is a unique regular Borel
measure p on X such that

f(a:):/Xx(t)d,u(t), V€ X.

The proof in the book uses the Stieltjes integral to prove the [a,b] domain case. As usual,
BV |a, b] does not provide unique duals: we need to deal with annoying measure zero cases.
We do this by defining the normalised space of bounded variation functions NBV]a,b],
which impose v(a) = 0 and right-continuity on (a,b).

2.2 Hahn-Banach Theorem

Let M, N be subspaces of vector space X with M C N, and f : M — K be a linear
functional. Then a linear functional F : N — K is an extension of f from M to N if
f(m) = F(m) for all m € M.

A sublinear functional p on a real vector space X satisfies:

1. p(x1 + 22) < p(x1) + p(x2) for all x1, 20 € X
2. plax) = ap(z) for all @« > 0 and z € X

Theorem 13 (Hahn-Banach, Extension form). Let X be a real linear normed space and p a
continuous sublinear functional on X. Let f be a sublinear functional defined on a subspace
M of X satisfying f(m) < p(m) for allm € M. Then there is an extension F of f from M
to X such that F(z) < p(z) on X.
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In particular, if f is a bounded linear functional, taking p(xz) = | fl|lmllx||, there is an
extension F of f from M to X such that F(x) < ||f|arllzll. Thus, |F|| = fa-

A corollary is that for any € X, where X is a normed space, there is a nonzero bounded
linear functional F' on X such that F(z) = ||F||||x]]. The proof is to consider the one-
dimensional subspace [z] (or [y] for y # 0 if = 0) and note that f(ax) = «||z|| is a linear
function for all @ € K (and hence any z € [z]) and is bounded by « (f is like a signed
norm?). By Hahn-Banach, f can be extended to F on X. Set o = 1 to obtain the result.
The converse is not true (in non-reflexive spaces)—there are bounded linear functionals f
such that ||z| < || f] for all z # 0.

2.3 Second Dual Space

Introduce the angle bracket notation: (x,z*) := x*(z). Note that by the Riesz Represen-
tation Theorem, inner products on Hilbert spaces are bounded linear functionals when one
multiplier is held fixed, and hence this notation generalises inner products.

Fix z € X. Then f(z*) = (z,2*) is a linear functional on X*. Now |f(z*)| = |(z,2*)| =
|x*(2)] < ||z*||||z|| and hence ||f|| < ||z||. Conversely, by the corollary to the Hahn-Banach
theorem, there exists z* € X* such that f(z*) = (z,2*) = ||z|/||z*||. Hence |f] = ||z|-
Hence f is a bounded linear functional. We can thus define the natural mapping ¢ : X — X**
such that (z,z*) = (z*,¢(x)). Where ¢ is surjective, there is a bijection between X and
X** and we write X = X** and call X reflexive. This holds for the ¢, and L, spaces where
1 < p < oo. However, X C X™** holds strictly for non-reflexive spaces, such as ¢; and L;.

In a reflexive space, all bounded linear functionals f have some x € X such that f(z) =

£l

2.4 Alignment and Orthogonal Complements
x* € X* is aligned with © € X if (z,z*) = ||x*||||z|.

For example, x € L, is aligned with y € L, if and only if the condition for equality in the
Holder Tnequality hold: x(t) = K sign(y(t))|y(t)|%/? for some constant K. If z € Cla,b],
then denoting I't = x71[||z||] and I~ = 2= [~ ||z||], v € NBV]a,b] is aligned with z iff v is
increasing in I't, decreasing in I'~, and does not vary elsewhere. Under these conditions,

b
Ji 2@ dv(t) = ||z (Jpr dv(t) = [ro dv(®)) = 2| TV (v) = [Jz]]|v].
z* € X* is orthogonal to x € X if (z,2*) = 0.

Let S C X. Define the orthogonal complement/annihilator S+ = {z* € X* : (s,2*) =
0, Vs € S} ¢ X*. Similarly, if U C X*, then U+ C X**. More usefully, the orthogonal
complement of U in X is *U = {z € X : (z,u) = 0, Yu € U} C X. Note that tU =
U+ N ¢[X] where ¢ is the natural mapping.

Theorem 14. Let M be a closed subspace of normed space X. Then *[M*] = M.
2.5 Minimum Norm Problems

Theorem 15. Let X be a real normed vector space and M be a subspace of X. Let x € X
and d = dist(zx, M) = infenmllz — m|. Then d = max,«cpri.qg= <1 (T, %), achieved at
some xf € M. If the infimum is achieved at mo € M, then x}) is aligned with x —my, that
is to say, (x — mo,x$) = ||z — moll||zgl]. In more natural notation, if |z||a = dist(z, M),
then ||z||ar = ||x||pre where the right-hand term is the usual functional norm applied to the
naturally mapped ¢(x).
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Proof. The proof is trivial if x € M. Hence assume x ¢ M.

Step 1: Prove (z,z*) < d. Let € > 0 be arbitrary, let m € M satisfy ||z — m.|| < d + ¢,
which exists because M is a subspace. Then for any z* € M+ such that ||z*|| < 1, we have
(me, z*) = 0 and hence

(z,2%) = (x = me,a") < ||l2"||[lz — ]| < d +e

o

As € > 0 was arbitrary, we have (z,z*) < d.

Step 2: Prove that the maximum is attained at some x§. Let N = [z + M]. If n € N, the
representation n = ax +m is unique, where o € R and m € M. Define the linear functional
f: N = Rby f(n) = ad. Note that if m € M, then @« = 0 and f(m) = 0, and that
f(z) = d. We have

O o dald o eld 4
W Tl =N Taw -l ~ W Tallle +m/all ~ wix]z +m/a]

The maximum xj; is attained at the Hahn-Banach extension of f from N to X. Note that
lzg|l =1 and zy € M*. Further, (z,x}) = d.

Step 3: Alignment. Assume there exists mg € M such that ||z — mg|| = d. Let =} € M*,
lz§]l = 1 obtain the maximum. Then

*

(x —mo, x5 )= (z,25) =d = ||lz5]|lz — mol O
~

eM-+ =1

A corollary is thus: let x be an element of real normed vector space X and M be a subspace
of X. Then mg € M satisfies || — mo|| < ||z — m|| for all m € M iff there is a nonzero
x* € M~ aligned with  — mg. In this sense,  — mq is orthogonal to M, like the Hilbert
projection theorem.

Theorem 16. Let X be a real normed vector space and M be a subspace of X. Let x* € X*
and denote d = dist(z*, M*). d = min,,.cpo ||2* — m*|| is achieved at some m} € M+,
and d = Supe o<1 (@, ) = [[2*||m. If the supremum is achieved at xo € M, then
x* — mp is aligned with xo. In more natural notation, if ||x*||y1 = dist(z*, ML), then

e l[are = llz* [ ar-

Proof. Step 1: Prove ||z* — m*|| > ||z*||». For any m* € M+, we have

[ =m*|| = sup ((z,2") = (z,m")) > sup  ({z,2") — (z,m"))

[EES! veM: e <1

Noting that (x,m*) =0 for all x € M, we have ||z* —m*|| > ||z*||ap-

Step 2: Prove that the minimum is attained at some mf. Let y* be the Hahn-Banach
extension of z*|p; from M to X. Then a* —y* = 0 on M. Set m{ = z* — y*. Then
mg € M+ and |2 — mg|| = ||lz* — 2* +y*|| = |y*|| = lla*[|ar-

Step 3: Alignment. Assume there exists g € M such that (xg,2*) = d, which from Step
1 implies that zy = argmax,eps. ) <1(2;2*). Then [[xof = 1 (else (zo/[zoll,2*) > d,
contradicting steps 1-2). Also,

l[zollllz™ = mgll = d = (w0, ") = (xo, 2" — mg)

where the last equality follows from m§ € M=, implying that (zg, m$) = 0. O
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As an application, we will prove one of Tonelli’s theorems.

Proposition 6. If f is continuous on [a,b] and py is a polynomial of up to degree n min-
imising || f — plloo, then |f(t) — po(t)| achieves its mazimum on at least n + 2 points on
[a, b].

Proof. We formulate this as projecting f in space X = C|[a, b] onto the (n + 1)-dimensional
subspace M of n*™ degree polynomials. pg exists by the finite-dimensionality of M. Let
d=|lf —pollec >0 and T = |f — po| *[{d}] denote the arg-maxima of |f — po|. By the first
minimum norm theorem, f—po must be aligned with some v* € M+ C Cla, b]* = NBV|a, b].
As d > 0, v* # 0. From the alignment section, we know that v* varies only on T'.

Assume by way of contradiction that |I'| < n + 2. Let t; € I" such that v* varies at tj.
Then the polynomial g(t) = [[,cp\ (4,;(t — 5) has at most an order of n + 1 so ¢ € M,

* b * * : * *
but (g,v*) = [/ qdv* = [serygey (tr = 8) x (0" () — hmtat; v*(t)) # 0, so v* ¢ M*.
Contradiction! O

As another application, we will solve minimum norm problems with linear constraints, just
like the Hilbert Space section.

Proposition 7. Lety; € X fori=1,...,n and suppose D = {x* € X* : (y;, ") = ¢;, i =

1,...,n} is nonempty (so the constraints are consistent). Then
min ||z*|| = max c¢'a.
a*€D [Yal<1

Proof. Let M = span{yi,...,yn} and Z* € D. The n constraints define a linear variety
Z* 4+ M. Hence, the problem is an Z*-shift of the problem of projecting —z* onto M=.
Thus, if we let d = ming,, ,«y—,[|2*||, then d = min,,«cp1(|Z* — m*||. By the second
minimum norm theorem, d = SUp ez <1(%, %) = SUP|5, a,y, |<1(2_; @i¥i, T*) where the
second equality follows from the definition of M. Now (3, aiy;, z*) = >, ai(y;, &%) =
S, a;c; = ¢’ a where the second equality follows from z* € D. O

2.6 'Weak convergence

The following convergence notions appear in decreasing order of strength. Consider {z,} in
normed vector space X.

o 1z, — z (strongly) if ||z, — 2| = 0 as n — oo
o 1z, — z (weakly) if (x,,2*) — (x,2*) as n — oo for all z* € X*
o 1 —* x* (weak®) if (x,2)) — (z,2*) asn — oo forall z € X

Strong implies weak as |(z,,z*) — (z,2*)| < [|[z*||||zn — x|. Weak implies weak* as X**
contains ¢(X), where ¢ is the natural mapping.

More definitions:

e A set K C X* is weak™ compact if every infinite sequence from K contains a weak*
convergent subsequence (converging to a point in K).

e A functional f : X — K is weakly continuous at x if given € > 0, there is a § > 0
and finite {z7,..., 2} } C X* such that |f(y) — f(z)| < ¢, for all y € X such that
Ky, ) — (z,zf)| <dforalli=1,...,m.

e A functional f : X* — K is weak* continuous at x* if given € > 0, there is a § > 0
and finite {x1,..., 2y} C X such that |f(y*) — f(z*)] < e, for all y* € X* such that
[(zi, y*) — (@i, z*)| < dforalli=1,...,m.
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Theorem 17 (Alaoglu). Let X be a real normed vector space. The closed unit sphere in
X* is weak™ compact.

Proposition 8. If , — = and f is weakly continuous, then f(x,) — f(x). Similarly, if
xf —=* x* and f is weak*® continuous, then f(x}) — f(x*).

Proof. Fix € > 0. As f is weakly continuous, there exists § > 0 and =} € X* such that
|fly) — f(z)] < € for all y € X satisfying |[(y,z}) — (z,zf)| < d for all i = 1,...,m. By
definition of weak convergence, there exists N € N such that |[(z,,z}) — (z,z])| < § for all
n > N and all i. Hence |f(z,) — f(x)| < e for all n > N. For weak* convergence, simply
change the variables in the proof. O

Proposition 9 (Extreme Value Theorem). Let S C X* be weak* compact and f: S — R
be weak™ continuous. Then f is bounded on S and achieves its mazimum on S.

Proof. Let {yn} C f(S) C R be an arbitrary sequence. Then there exists {z} C S such that
f(z},) = yn for all n € N. By weak™ compactness, there exists subsequence {z}, } such that
x,, —*x* €S As fis weak™ continuous, by the previous proposition, f(z;,) — f(z*).
Let yn, = f(z},,) for all k € N and y = f(z*). Then y,, — y as k — 00, so {y,} has
a convergent subsequence and f(S) is compact. By the Heine-Borel theorem, f must be

bounded (in the traditional sense, not in the linear functional sense).

Let y, — sup f(S). Then there exists {z}} C S such that f(x}) = y, for all n € N. By
weak™® compactness, there exists subsequence {r}, } such that z; —* 2* € S. As f is
weak™ continuous, by the previous proposition, f(z;,,) — f(z*). In addition, f(2*) must
be sup f(59), so f achieves its maximum on S. O

Combining Alaoglu’s Theorem and the Extreme Value Theorem, set S to be the unit sphere
in X* and f(z*) = (z,2*) for some x € X, which is weak* continuous. Then the EVT tells
us that f(z*) achieves its maximum on the unit sphere. By the first alignment theorem,
taking M = {0}, we have alignment with the optimal x§, so (z,z{) = ||z§||||z|| = ||z||, which
is equivalent to the Corollary to the Hahn-Banach Theorem.

2.7 Hyperplanes
A hyperplane H in vector space X is a maximal proper linear variety. It satisfies:

e H#X
e If V is a linear variety containing X, then V=H or V =X

Since H is also a linear variety, then H € {H, X} so H is either closed or dense.

Proposition 10. Hyperplanes are pre-images under linear functionals of singleton sets.
Conversely, if f is a non-zero linear functional on X, f=1[{c}] is a hyperplane in X where
ce K.

Proof. If H contains the origin, then there is a linear functional f such that H = f~*[{0}].
We can construct f by taking z; ¢ H and defining f(z) = o where x = axy + h for some
h € H (recall by linear independence that o and h are unique).

If H does not contain the origin, then H = x9+ M for some linear subspace M and g ¢ M.
Then construct f(x) = a where x = axg + m for some m € M and H = f~1[{1}].
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Conversely, let M = f~1[{0}], a linear subspace of X. Let 29 € X\ M with f(zo) = 1. Then
for any « € X, we have f(z — f(z)xo) = f(x) — f(zo)f(z) = 0, and thus = — f(z)xo € M.
Thus, = m + f(x)xo for some m € M, and hence X = [xg + M]. Hence M is a proper
maximal subspace. Letting x; € M such that f(z1) = ¢, we have f~1[{c}] = 21+ M is a
hyperplane. O

In addition, if H is not a subspace (i.e. it does not contain the origin), the representation
f7[{1}] is unique. To prove this, assume H = f~1[{1}] = ¢ ![{1}]. Then H C (f —
g)"'[{0}], which is a linear subspace. But by the definition of H as a maximal linear
variety, (f —g)7'{0}] = X so f =g.

Proposition 11. Let f be a nonzero linear functional on a normed vector space X. Then
the hyperplane H = f~1[{c}] is closed for every ¢ € K iff f is continuous/bounded.

Let f be a nonzero linear functional on vector space X. The hyperplane H = f~![c]
determines four half-spaces (open and closed only make sense if f is continuous):

Negative Positive
Open  f7[(=o0, )] ={x: f(x) <c} f7[(c,00)] ={z: f(z) >c}
Closed  f~![(—oo,cf] ={z: f(z) <c}  f7H[[e,00)] = {z: f(z) > c}

The proof of the hyperplane separation theorem requires the introduction of a specific sub-
linear functional, the Minkowski functional:

pK(x)Zinf{r:%EK, r>0}

where 0 € int K. Beyond sublinearity, we have p > 0, p is continuous, int K = p~1[0,1)],
and K = p~1[[0,1]].

Theorem 18 (Hyperplane Separation Theorem). Let K be a convex set in real normed
vector space X, int K # 0, V is a linear variety in X such that V Nint K = 0. Then there is
a closed hyperplane in X containing V but no interior points of K. Hence there is x* € X*
and c € R such that (v,z*) = ¢ for allv € V and (k,z*) < c for allk € int K.

There are various other definitions and restatements (X, K are defined as in the theorem):

e A closed hyperplane H in X supports convex set K if K is contained in one closed
half-space determined by H and H N K # 0.

o If z ¢ int K # (), then there is a closed hyperplane H containing x such that K lies on
one side of H.

e Let Ky and K5 be convex sets in X such that int K; # () and Ky Nint Ky = (). Then
there is a closed hyperplane H separating K7 and Ks. That is to say, there is an
x* € X* such that sup,c g, (z,2*) <infyek, (z, ).

e Let K be closed and convex and = ¢ K. Then there is a closed half-space containing
K but not =z.

e Let K be closed and convex. Then K is the intersection of all closed half-spaces
containing it.

o The support functional of K is h(z*) = sup ¢ (x, z*).

Finally, there is another dual theorem:

Theorem 19. Let X be a real normed vector space and K be a convexr subset with sup-
port functional h. Let v1 € X and d = dist(x1,K) = infyexl||lx — z1||. Then d =
maX|\w*|\g1(<1171,13*> - h(x*)), achieved at some x§ € X*. If the infimum is achieved at
xo9 € K, then —xf is aligned with xo — 2.
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3 Hilbert Space exercises

Q3.1 Show that |(x|y)| = ||z|||ly]| if ax + By =0 for some scalars a, 5.

Take the usual proof of the inequality and notice that 0 = (z — Ay|z — Ay) if and only if
x — Ay = 0 by the property of the inner product.

Q3.2  Consider the set X of real functions x defined in R for which
NS T L
lim — lz(t)]*dt < oo.

Let M be the subspace where the limit is zero. Part (a) is trivial: show that the space
H = X/M becomes a pre-Hilbert space when the inner product is defined as

T
(olll) = i [ ateluterat

T—o0 _T

Part (b): show that H is not separable.

Q3.3 Let H consist of all m x n real matrices with addition and scalar multiplication
defined as the usual corresponding operations with matrices, and with the inner product of

two matrices A, B defined as
(A|B) = t(ATQB)

where @ is a symmetric, positive-definite m X m matriz. Prove that H is a Hilbert space.

Symmetry and linearity are trivial to show. As @ is positive-definite, if A # 0, then letting

A= [al e an] with some a; # 0, we have that
a aj Qa; ... afQa,
aqa=|i|Qm o owl=| i
a, alQa; ... a)Qa,

By the positive-definiteness of Q, a/ Qa; > 0 and strictly if a; # 0. Then (A]A) =
tr(ATQA) = >, a Qa; > 0. On the other hand (0]0) = tr(0) = 0.

(2

Let {A;} be a Cauchy sequence in H. Then [[A; — Agx||> = 0 as j,k — oo. Hence (4; —
Ap|A; — Ap) = 0 as j,k — co. Hence

Z(al(-j) — al(-k))TQ(a(-j) — a(-k)) —0 asjk—

7 %
i=1

Now (agj) - agk))TQ(az(-j) - agk)) > 0 for all ¢ by the positive definiteness of (). Hence we

must have (agj) — az(-k))TQ(an) — agk)) —0as j,k—ooforalli=1,...,n. By the positive
definiteness of (), we must have agj) — agk) — 0 as j, k — oco. Therefore, we have that {agjl)}
is a Cauchy sequence in R for alli=1,...,mand [ =1,...,n. By the completeness of R,

we have that {agfl)} — a;; € R and therefore A7 — [a;1]i=1...m, 1=1,..n s j — co. Hence
H is complete and therefore a Hilbert space.

Q3.4 Show that if g(y1,...,yn) = 0, the normal equations possess a solution but it is not
unique.

Say if rank G = m. Then take y1, ...,y to be a LI set of vectors (rearranging if necessary).
From the proposition, we know that G(y1,...,ym)(a1,...,m) " = ((x|y1),..., (@|ym)) "
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has a unique solution. Set £ = 1,...,n —m. Then yp+r = Z?:l Bjy; where some 3; is
nonzero. Then:

n n

Z(yz‘|ym+k)ai = Z(yi| Zj Bjy;)ev

i=1 i=1

=Y B> ailyilys)
J i=1
= Zﬁj(ﬂy]) from solution

= (222, BY5) = (@|ym+w)

Hence (v, ..., 0m,0,...,0)T is a solution to the normal equations. However, as there is
more than one way to choose a set of LI vectors out of yi, ..., ¥y, this solution cannot be
unique.

Q3.5  Find the linear function x(t) = a + bt minimising f_ll[t2 — x(t)]?dt.

Let pi(t) = t*. The problem is to minimise ||z — pa||z,(~1,1), where = € span{1,p;}. From
the projection theorem, (x — py)L span{1,p; }. Hence, (x — ps)L1:

1 1 1 5
0= / [t? — bt — a)dt = g[163]1_1 - 5b[zf2]1_1 —alt]t, = 32
—1

and hence a = 1/3. In addition, (x — p2)Lp;:

! 1 1 1 2
0= /_1[t2 — bt —alt dt = 1Ly — SPIL, — Salifly = b
and hence b = 0. The projection is z(t) = 1/3.

Q3.6  Given a function x € Ls3[0,1], we seek a polynomial p of degree n or less which
minimises fol |z(t) — p(t)|2dt while satisfying fol p(t)dt = 0.

Part (a): Show that this problem has a unique solution. The space of polynomials of degree
n or less satisfying fol p(t)dt = 0 form a closed linear subspace. To prove that it is closed,

consider a convergent sequence pg. If fol pr(t)dt = 0 for all k and pp — p (which is indeed
a degree < n polynomial by the finite-dimensionality and hence closedness of that space),
then by the Cauchy-Schwarz inequality,

/01 Ipi(t) — p(t)|dt < (/01 () — p(t)|2dt>

By the triangle inequality for integrals:

1/2 1/2

1
(/ dt) —0 ask — oo.
0

/Olpk(t)dt—/olp(t)dt = /Olpk(t)—p(t)dt’ g/ol P (t) — p(t)]dt

and by the reverse triangle inequality,

/Olpk(t)dt‘ -

1 1 1
/ p(t)dt| < / pr(t)dt — / p(t)dt‘ —0 ask— 0.
0 0 0

Hence . L
/ p(t)dt = lim [ pg(t)dt = 0.
0

k—o0 Jq

Then the existence of a unique solution is guaranteed by the projection theorem.
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Part (b): Show that this problem can be solved by firs finding the polynomial q of degree
n or less which minimises fol |z(t) — q(t)|?dt and then finding p of degree n or less which

minimises fol lq(t) — p(t)|?dt while satisfying the requirement fol p(t)dt = 0.

Denote the degree < n polynomials by P and the subset of polynomials satisfying the integral
requirement as Py C P. By the projection theorem, (z — ¢)LP and (¢ — p) LPy. Then Let
p € Py C P be arbitrary. We have that (z—p|p) = (x—q+q—p|p) = (x—q|p)+(¢—p|p) =0
and hence x — p 1 Py. Hence by the projection theorem, p is indeed the minimiser.

Q3.7 Let M and N be orthogonal closed subspaces of a Hilbert space H and let x be an
arbitrary vector in H. Show that the subspace M ® N is closed and that the orthogonal
projection of x onto M & N is equal to Pyr(x) + Py ().

Let y» € M & N and let y, — y. Now yr = my + ng admits a unique representation for
my, € M and nj, € N. We have that for all € > 0, there exists K € N such that ||y, —y|| <€,
for all £ > K. Thus, ||mi + nr — Pu(y) + Pu(y) —yl|| < e, for all & > K, where Pyp(y)
exists due to the projection theorem. Now my, — Pys(y) € M and y — Py(y) € M+ by the
projection theorem. As ny € N C M+, we deduce that ny + Py (y) —y € M+ (as Mt is a
linear subspace of H). By Pythagoras’s theorem, we may deduce that

Ims = Par@)II* + e + Par(y) —yll* < €, ¥k > K

and hence my — Py(y) as k — oo. Similarly, ny, — Py (y) as k — oo. Hence y has a unique
representation Pys(y) + Py(y) € M & N, so we may deduce that M @ N is closed.

Let z € H, m € M, and n € N be arbitrary. We have that
(z — Py(z) — Py(z)lm+n) = (z — Py(z)|m) + (z — Py (z)|n) =0

as (x — Py (z))Lm and (z — Py (z))Ln by the projection theorem. Further, as Py(z) € M,
Py(z) € N, and M LN, then Py(x)Ln and Py(x)Lm. Hence, by the projection theorem,
Pyen(z) = Py(z) + Py (2).

Q3.9  Prove that if S C H, then S*t+ =[S].

We know that H = S+ @ St+ as St is a closed linear subspace. We also know that

H= E@EL. Now S C [S] implies that [S]L C S*. We shall prove the reverse inclusion:
let z € S+ and y € [S]. Then there exists a sequence y,, € [S] such that y,, — y. Now for
all n € N, yp, = >, BnkSnk is a finite sum with scalars 3, and s,; € S for all n, k. Hence

(@lyn) = (@] 22y Buksuk) = 2o, Buk(@]snk) = 0.
Using the continuity of the inner product,
(2ly) = (2| lim y,) = lim (z]y,) =0

and hence S+ C EL. Hence S+ = EL and hence S+ = [9].

Q3.10 A Hilbert space H of functions on a set S is said to be a reproducing kernel Hilbert
space if there is a function K defined on S x S having the properties:

1. K(-,t) € H foreacht € S
2. z(t) = (z|K(,t)) foreach x € H, t € S.

Such a function K is called a reproducing kernel.

Prove that a reproducing kernel, if it exists, is unique.
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Assume by way of contradiction that K; and K5 are reproducing kernels of H, and K # K.
Then K;(-,t) — K3(-,t) # 0. From part 1 of the definition and because H is a linear space,
Ky(-,t) — K3(-,t) € H. By the positive definiteness of the inner product,

(Ki(-,t) = Ko, )| K1 (-, ) — Ka(-,t)) >0
= (Ki(t) = Ko ()| K1 (1)) > (Ki(,t) — Ka(-, )| Ka(1))
But this contradicts part 2 of the definition.

Q3.13  Show that the Gram determinant g(x1,...,x,) is never negative.

Note: For n = 2, this is the Cauchy-Schwarz inequality. In fact, we are generalising it.
Further, we will prove something stronger, that G is positive semi-definite.

Let y € R™. Then

n n

y' Gy = Zzyiy](xz|xj) = ZZ(%%M%) = (Z Yii

i=1 j=1 i=1 j=1

n
> u)
j=1
where we use the linearity of the inner product. Then changing the index, we have

y Gy = (i Yi i%%) >0
i=1 i=1

by the positive definiteness of the inner product.

Q3.14  Let {y1,...,yn} be LI vectors in pre-Hilbert space X and x € X. Show that the
best approxzimation to x in the subspace generated by {y;} has the explicit representation

(Wily) - (unlyr)  (2ly1)
Wilyn) o (Wnlyn)  (2|yn)
P Y1 . Un, 0
—9(Y1, - Yn)
Show that the minimum error & — x is given by
(Wily) - (wnly)  (2ly1)
Wilyn) o (Unlyn)  (zlyn)
R Y1 e Yn X
r—x=
—9(Y15- -5 Yn)

Denote & = a1y1 + - - - + apyn. Then using the Gram matrix and Cramer’s rule, we deduce
that

Wily) o Wialy)  (@ly) - ialy) - (walyn)
o (y1|yn) (yi—1|yn) (x|yn) (yi+1|yn) (yn|yn)
’ g(yhvyn)
Then we can move the ((z|y1),...,(x|y,))" term to the end, which involves n — i pairwise

interchanges of rows. As each pairwise interchange reverses the sign of the determinant, we
have:

(wilyr) - (Wicily)  Wisaly) -0 (alyr)  (2lyr)

@il o i) Gealue) o Galw) ()

o = (—1) 91, yn)
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Hence
(y1|y1) v Wicaly) Wiglyn) oo (nly)  (zlyr)
S Wilyn) o Wily) @inly) oo Galyn) (ela)|
m_z:: g(yhayn) ’
(yllyl) oo () (zlnn)
_ Y1 Yn 0
_g(y17~-~7yn)

Note that we must introduce the negative sign (in the denominator for notational clarity)
because when n — i is odd, the checkerboard pattern of the determinant treats y; positively
and when n — 7 is even, the checkerboard pattern of the determinant treats y; as negative.

For & — x, note that the checkerboard pattern keeps all terms on the main diagonal positive.
Therefore, we have that the right hand side is

(ilyr) - (ynlyr)
N (Yilyn) = (Ynlyn) . 91, Yn) .
T+ x =r—r—=X=—x.
_g(yla"'vyn) g(ylavyn)

Q3.16

Proposition 12 (Parseval’s Equality). An orthonormal sequence {e;} is complete in a
Hilbert space H iff for all z,y € H,

oo

(zly) =Y (ales)(eily).

i=1

Prove Parseval’s equality.

Assume {e;} is a complete orthonormal sequence. Then z = ), (x|e;)e; and y = >, (ylei)e;
Then we have

o0 o0
(zly) = (Z xle;)e; Z ylej)e >
i=1 j=1
o0 o0
= (zlei)(ejly) (eile;)
i=1 j=1 =5,
oo
= Z($|€l)(€z|y)
i=1

where d;; denotes the Dirac delta function.

Assume Parseval’s equality holds. Then say if y € H is orthogonal to the subspace generated
by {e;}. This implies that (e;|y) = 0 for all i. Then (z|y) = 0 for all z € H by the equality.
In particular, (y|y) = 0, and therefore y = 0 by the positive definiteness of the inner product.

Hence the only element of [{e;}]  is 0, and thus {e;} is a complete orthonormal sequence.
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Q3.17  Let {y1,...,Yn} be LI and suppose {e1,...,e,} are obtained from the y;s by the
Gram-Schmidt procedure. Let

n

T = E x|€z € = E QY-
=1

Show that the coefficients o; can be easily obtained from the Fourier coefficients (x|e;).

We know that y; = Z?zl(yi|ej)ej as the y;s lie in the space spanned by {e;}. Hence

Z(qf"e] = Z ;Y = Zai yl|ej Zzaz yz|ej
j=1 i=1 =1 j=1 j=1i=1
Hence we have (zle;) = Y0 a;(yile;) for all j = 1,...,n. Thus the various a; be be
obtained by solving the linear system
(yiler) (y2ler) ... (ynle)| [aa (z|e1)
(yile2) (y2lea) .. (ynle2)| Jaa| | (z[e2)
(yilen) (y2len) oo (ynlen)] Lom (zlen)

Q3.21  Using the projection theorem, solve the finite-dimensional problem.:

minz ' Qz

subject to Az =b

where x is an n-vector, Q) a positive-definite symmetric n X n matriz, A an m xXn (m <n),
and b an m-vector.

Define the inner product (z|y) = z"Qy. This is linear and the positive-definiteness of Q
guarantees positive definiteness of the inner product. The problem can be formulated as a
minimum norm problem: minimise ||z||? in R™ such that Az = b. Write

A:
T
am

th th

where we must be careful to note that a; is the ¢** row of A, and not the ** column.
The constraint may be written as a, x = b; for i = 1,...,m. We may rewrite this as
a] Q7'Qxz = b;, and hence (Q~'a;|z) = b; (note that @ being symmetric implies that Q!

is also symmetric). By the theorem, the (unique) solution takes the form
m

o= BiQ 'a;i=Q '[ar ... am|B=Q 'ATB
i=1

where the (; are chosen to satisfy Axg = b. Expanding, we have
Azg = AQ'ATB

Notice that if A is full rank, then by the positive definiteness of Q, we have AQ'AT is full
rank and therefore 3 = (AQ'AT)~'b. Therefore, zg = Q TAT(AQ~1AT)~!b, although
this seems wrong.

Q3.24  The following theorem is valid in a Hilbert space H. If K is a closed convex set in
H and z € H, x ¢ K; there is a unique vector kg € K such that ||z — ko] < ||z — k|| for all
ke K.
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Show that this theorem does not apply in arbitrary Banach space.
Consider the space R? endowed with the supremum norm. The set K = R, xR is closed (by

the equivalence of the p-norms) and convex. Consider # = (—1,0). Then minger, xr|z —
k|| = 1, but candidates for the argmin kg include the entire set {0} x [—1, 1].

4 Dual Space Exercises

Q5.1 Define linear functional f on Ly[0,1] by

fz / /b ) ds dt

where a,b € Lo[0,1]. Show that f is a bounded linear functional and find y € Ly such that
f(@) = (xly).

Let c(t f b(s)z(s) ds. Then f(z) = (alc). By the Cauchy-Schwarz inequality, |f(z)| <

||a|\||C|| Now
||c—/01 /Otb(s)x(s) s dt</ (/ 1b(s) ds> dt</ / Ib(s 2ds/ (o (s)|?ds dt

where the first inequality is the triangular inequality for integrals and the second inequality
is the Cauchy-Schwarz inequality. Hence

1 1 1 1
el < [ [ ws)Pds [ fats)Pds de = [ola] [ at = bl o]
0 Jo 0 0

Hence |f(x)| < |la||||b]|||z|| and thus f is a bounded linear functional. Note that

// ) ds dt = // ) dt ds

by considering the region in R? over which integration is taken. Hence

fla) = [ b(s) / alt) dt a(s) ds

so y(s) = b(s) fsl a(t) dt.
Q5.2 Characterise the dual space of ¢, the space of convergent sequences.

Let x € ¢. Then

[f(@)] = 1FO2Zy wies)| = flea)] < lzfloo = [lzlloollyllx

where the second equality follows from the linearity of f. As x € ¢ arbitrary, || f|| < |lyll1-

N)

Conversely, consider ™) such that xE = 81gn(y1)1[l<N As :E —> 0, we have ™) e c,

and ||z(M)|| = 1. We have
f@™) = F(EZ, Ve Z jvil = Z il ll ™o

recalling that ||#™)||, = 1. By the definition of the operator norm, Zf\il lysl < |Ifll- As
N € N arbitrary, we can take N — oo and deduce that [y|l; = > .2, |vi| < || f]I-
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Combining the two inequalities, we have ||y||1 = ||f||. Hence the dual of ¢ is ¢;, where we
associate each y € ¢; with the bounded linear functional f(x) = > 2, z;y;.

Q5.3 Let X* be the dual of normed space X. Show that if X* is separable, then X is
separable.

Q5.4 Show that the normed space Cla,b] is not reflexive.

Cla, b] is separable by the Stone-Weierstrass Theorem. Consider d,,d,, the Dirac delta
function for z,y € [a,b] and x # y. Then |0, — d,]| = 2 in the total variation norm. Hence
there are uncountably infinite disjoint open balls of the form B(d,,1) with = € [a, b], all of
which are subsets of NBV[a,b]. Hence NBV{a,b| is not separable, and its dual cannot be
the separable space Cla,b] by Question 5.3.

Q5.5 Prove that x € Ly, is aligned with y € L, iff x(t) = K sign(y(t))|y(t)|/?.

If:
b b b
o) = [ att®) de =K [yt de =i [ o)

= (et dt)l/p = i( [ wor dt>1/ '
i = ([ wtore dt)”q_

el = 5 ( [ e ) T / IO dt = (.29

Only if: the proof of Holder’s Inequality proceeds by Young’s Inequality, which shows that
for any positive s, t that st < s?/p+41t9/q. As this proof uses the concavity of the logarithm,
we have inequality if sP = t?, and Holder uses s = |z|/||z|| and t = |y|/||ly||. Thus, (|y|, |z|) =
Jalllgl] if and only if (jal/l2ll)? = (gl/llyl)?. Thus, 2P = [y]? x [o]P/ylle. Setting
KP = ||z||P/||y||9, we have |z|P = KP|y|? and |z| = K|y|?/?. Finally, for alignment, we need
to ensure that (y,z) = (|y|, |z|), which is guaranteed if signz = signy.

and we have

and

Hence

Q5.6



